Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thu gọn và sắp xếp:
M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1
= x4 + 2x2 +1
b)M(1) = 14 + 2.12 + 1 = 4
M(–1) = (–1)4 + 2(–1)2 + 1 = 4
Ta có M(x)=\(x^4+2x^2+1\)
Vì \(x^4\)và \(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x
Nên \(x^4+2x^2+1>0\)
Tức là M(x)\(\ne0\) với mọi x
Vậy đa thức trên không có nghiệm.
a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến
M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1
=x4+2x2+1=x4+2x2+1
b) M(1)=14+2.12+1=4M(1)=14+2.12+1=4
M(−1)=(−1)4+2.(−1)2+1=4M(−1)=(−1)4+2.(−1)2+1=4
c) Ta có: M(x)=x4+2x2+1M(x)=x4+2x2+1
Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.
Ta có : \(A\left(-1\right)=-2.\left(-1\right)^2-5.\left(-1\right)-5+2.\left(-1\right)^4\)
\(=-2+5-5+2\)
\(=0\)
=> x = -1 là nghiệm của đa thức A(x) ( 1 )
Ta có : \(B\left(-1\right)=-2.\left(-1\right)^4-2.\left(-1\right)^3-7\left(-1\right)+\left(-2\right)\)
\(=-2+2+7-2\)
\(=5\)
=> x = -1 không là nghiệm của đa thức B(x) ( 2 )
Từ ( 1 ) và ( 2 ) => đpcm
bạn trả lời vs thầy là :
" bài này nhìn qua cx biết nó > 0 oy, nên vô nghiệm "
chỉ có những thằng thiểu năng mới hỏi câu kiểu này
a, \(x^2+1\)
Có \(x^2\ge0\forall x\)=>x^2+1 >0
vậy đa thức vô nghiệm
b,(2x+1)^2+3
có (2x+1)^2\(\ge\)0 với mọi x
=>(2x+1)^2+3>0
=>đa thức này không có nghiệm
Ta có :
\(f\left(x\right)=x^2+2x+3.\)
\(f\left(x\right)=\left(x^2+2x+1\right)+2\)
\(f\left(x\right)=\left(x+1\right)^2+2\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow f\left(x\right)\ge2\forall x\)
Vậy đa thức trên vô nghiệm
Ta có :
f\left(x\right)=x^2+2x+3.f(x)=x2+2x+3.
f\left(x\right)=\left(x^2+2x+1\right)+2f(x)=(x2+2x+1)+2
f\left(x\right)=\left(x+1\right)^2+2f(x)=(x+1)2+2
Mà \left(x+1\right)^2\ge0\forall x(x+1)2≥0∀x
\Rightarrow f\left(x\right)\ge2\forall x⇒f(x)≥2∀x
Vậy đa thức trên vô nghiệm
Vì \(H\left(x\right)=2x^2+1\ge1>0\)
Nên đa thức trên vô nghiệm
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm
Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
Ta có:
x^4+2x^3+2x^2+1
=x^2(x^2+2x+2)+1
Ta thấy x^2(x^2+2x+2)> hoặc =0 nên
x^2(x^2+2x+2)+1>0 nên ko có nghiệm
Chúc học tốt