K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2024

Khi đó, ADAD là đường trung tuyến của tam giác ABCABC.

Vì GG là trọng tâm của tam giác ABCABC nên điểm GG nằm trên cạnh ADAD.

Ta có AGAD=23ADAG=32 hay AG=23ADAG=32AD.

Vì MGMG // ABAB, theo định lí Thalès, ta suy ra: AGAD=BMBD=23ADAG=BDBM=32.

Ta có BD=CDBD=CD (vì DD là trung điểm của cạnh BCBC) nên BMBC=BM2BD=22.3=13BCBM=2BDBM=2.32=31.

Do đó BM=13BCBM=31BC (đpcm).

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Lấy D là trung điểm của cạnh BC.

Khi đó, AD là đường trung tuyến của tam giác ABC.

Vì G là trọng tâm của tam giác ABC nên điểm G nằm trên cạnh AD.

Ta có \(\dfrac{{AG}}{{A{\rm{D}}}} = \dfrac{2}{3}\) hay \(AG = \dfrac{2}{3}A{\rm{D}}\)

Vì MG // AB, theo định lí Thalès, ta suy ra: \(\dfrac{{AG}}{{A{\rm{D}}}} = \dfrac{{BM}}{{B{\rm{D}}}} = \dfrac{2}{3}\)

Ta có BD = CD (vì D là trung điểm của cạnh BC) nên \(\dfrac{{BM}}{{BC}} = \dfrac{{BM}}{{2B{\rm{D}}}} = \dfrac{2}{{2.3}} = \dfrac{1}{3}\)

Do đó \(BM = \dfrac{1}{3}BC\) (đpcm).

Gọi E là trung điểm của AB

Xét ΔABC có

CE là đường trung tuyến ứng với cạnh AB(E là trung điểm của AB)

G là trọng tâm của ΔABC(Gt)

Do đó: G∈CE(Tính chất ba đường trung tuyến của tam giác)

⇒GD//BE

Xét ΔABC có

CE là đường trung tuyến ứng với cạnh AB(E là trung điểm của AB)

G là trọng tâm của ΔABC(gt)

Do đó: \(CG=\dfrac{2}{3}CE\)(Tính chất ba đường trung tuyến của tam giác)(1)

Ta có: CG+GE=CE(G nằm giữa C và E)

⇔GE=CE-EG

hay \(GE=\dfrac{1}{3}CE\)(2)

Từ (1) và (2) suy ra \(\dfrac{CG}{GE}=\dfrac{2}{1}\)

Xét ΔCEB có 

G∈CE(cmt)

D∈BC(gt)

GD//EB(cmt)

Do đó: \(\dfrac{GC}{EG}=\dfrac{DC}{BD}\)(Định lí Ta lét)

\(\dfrac{DC}{BD}=2\)

hay DC=2BD

Ta có: BD+DC=BC(D nằm giữa B và C)

⇔2BD+BD=BC

⇔3BD=BC

hay \(BD=\dfrac{1}{3}BC\)(đpcm)

20 tháng 1 2021

Từ điểm C kẻ đường trung tuyến CE của tam giác ABC

Ta có GD sog sog AB (gt).

 Suy ra : GD sog sog BE ( E thuộc AB)

Xét Tam giác ABC: G là trọng tâm (gt)

 Suy ra: GE/CE = 1/3 (Tc trọng tâm trong tgiác)

Xét tam giác BCE có: GD sog sog BE (cmt)

 Suy ra: BD/BC = GE/CE   (định lý Talet)

mà:  GE/CE = 1/3 (cmt)

 Suy ra: BD = 1/3 BC      (đpcm)

 

Bạn ghi lại đề đi bạn

21 tháng 12 2024

Gia sử AB < AC

Kẻ BM,CN // DE , trung tuyến AF

Tam giác BMF = tam giác CNF ( g.c.g)

=> MF = NF

=> AB/AD = AM/AG ; AC/AE = AN/AG

=> AB/AD = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3 ( VÌ AF = 3/2.AG )

=> ĐPCM

Tk mk nha

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0