K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAME vuông tại E và ΔAMF vuông tại F có 

AM chung

\(\widehat{EAM}=\widehat{FAM}\)(AM là tia phân giác của \(\widehat{FAE}\))

Do đó: ΔAME=ΔAMF(cạnh huyền-góc nhọn)

Ta có: AM là tia phân giác của \(\widehat{BAC}\)(cmt)

nên \(\widehat{BAM}=\dfrac{\widehat{BAC}}{2}=\dfrac{90^0}{2}=45^0\)

hay \(\widehat{EAM}=45^0\)

Xét ΔEAM vuông tại E có \(\widehat{EAM}=45^0\)(cmt)

nên ΔEAM vuông cân tại E(Dấu hiệu nhận biết tam giác vuông cân)

hay AE=ME(hai cạnh bên)(đpcm)

b) Ta có: AE=ME(cmt)

mà AE=2cm(gt)

nên ME=2cm

Áp dụng định lí Pytago vào ΔEBM vuông tại E, ta được:

\(BM^2=BE^2+ME^2\)

\(\Leftrightarrow BM^2=1^2+2^2=5\)

hay \(BM=\sqrt{5}cm\)

Vậy: \(BM=\sqrt{5}cm\)

22 tháng 11 2018

A B C M 1 2 1 2

1.Xét tam giác AMB và tam giác AMC có: 

\(AB=AC\);\(AM:\) (cạnh chung)

Do đó \(\Delta AMB=\Delta AMC\)(cạnh huyền-cạnh góc vuông)

2. ​\(\Delta AMB=\Delta AMC\Rightarrow\widehat{A_1}=\widehat{A_2}\) (hai góc tương ứng) 

Suy ra AM là tia phân giác của góc A

3. Chứng minh tương tự.

a: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)
AM chung

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là phân giác

nên AM là đường cao

c: Xét ΔAMD vuông tại D và ΔAME vuông tại E có

AM chung

\(\widehat{MAD}=\widehat{MAE}\)

Do đó: ΔAMD=ΔAME

Suy ra: AD=AE

11 tháng 2 2018

a)  2 tam giác = nhau (cạnh huyền góc nhọn )

b) gọi i guiao điểm BM và AE .2 tam giác trên bằng nhau => AB=BE Nên tam giác ABE cân tại B dễ dàng cm 2 tam giác ABi và BIE =nhau theo trường hoợ (g-c-g).tự cm rta đc vuông góc

c) Xét 2 tam giác MEC và AMN . góc MAB =90 độ,góc MEC= 90 độ. AM=ME ( vì tam giacs ABM= tam giác BEM). gocs AMN= gocs EMC.xong 2 tam giác bằng nhau theo trường hợp (g-c-g)

24 tháng 4 2017

xaet1 tam giác AEM và tam giác AFM có :

AE=AF(GT)

EAM=FAM(ABC cân tại A;AM là trung tuyến)

AM Cạnh chung

=>tam giác AEM=AFM (c.g .c )

=>ME=MF(cạnh tương ứng)

=> AEM=AFM (góc tương ứng)

b) vì AEM=AFM (theo a)

=>AEF là tam giác cân tại A(tính chất tam giác cân)

mk lm được nhiu ak

7 tháng 12 2015

len google

 

10 tháng 7 2017

A B C M I

a) Xét tam giác AMB và tam giác AMC ta có:

AM là cạnh chung

AB = AC (gt)

góc BAM = góc CAM ( AM là tia phân giác của góc BAC)

=> tam giác AMB = tam giác AMC ( c - g - c)

b) Xét tam giác AEM vuông tại E và tam giác AFM vuông tại F ta có:

AM là cạnh chung

góc EAM = góc FAM ( AM là tia p/g của góc BAC)

=> tam giác AEM = tam giác AFM ( ch - gn)

=> ME = MF ( 2 cạnh tương ứng)

c) Ta có:

BI // AC (gt)

IF _|_ AC tại F (gt)

=> FI _|_ BI tại I

 Ta có:

góc EBM = góc FCM ( tam giác AMB = tam giác AMC)

góc IBM = góc FCM ( 2 góc so le trong và BI // AC)

=> góc EBM = góc IBM

Xét tam giác EBM vuông tại E và tam giác IBM vuông tại I ta có:

BM là cạnh chung

góc EBM = góc IBM (cmt)

=> tam giác EBM = tam giác IBM ( ch - gn)

=> BE = BI ( 2 cạnh tương ứng)

d) Ta có:

ME = MF ( tam giác AEM = tam giác ÀM)

ME = MB ( tam giác EBM = tam giác IBM)

=> MF = MB

=> M là trung điểm của BF ( M thuộc BF)

=> MB = 1/2 IF

Mà ME = MB ( cmt)

Nên ME = 1/2 IF ( đpcm)

a: Xét ΔBAM và ΔBEM có

BA=BE

góc ABM=góc EBM

BM chung

=>ΔBAM=ΔBEM

=>góc BAM=góc BEM=90 độ

=>ME vuông góc BC

b: ME=MA

mà MA<MF

nên ME<MF

c: ΔMAE có MA=ME

nên ΔMAE cân tại M