K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

A B C M I

a) Xét tam giác AMB và tam giác AMC ta có:

AM là cạnh chung

AB = AC (gt)

góc BAM = góc CAM ( AM là tia phân giác của góc BAC)

=> tam giác AMB = tam giác AMC ( c - g - c)

b) Xét tam giác AEM vuông tại E và tam giác AFM vuông tại F ta có:

AM là cạnh chung

góc EAM = góc FAM ( AM là tia p/g của góc BAC)

=> tam giác AEM = tam giác AFM ( ch - gn)

=> ME = MF ( 2 cạnh tương ứng)

c) Ta có:

BI // AC (gt)

IF _|_ AC tại F (gt)

=> FI _|_ BI tại I

 Ta có:

góc EBM = góc FCM ( tam giác AMB = tam giác AMC)

góc IBM = góc FCM ( 2 góc so le trong và BI // AC)

=> góc EBM = góc IBM

Xét tam giác EBM vuông tại E và tam giác IBM vuông tại I ta có:

BM là cạnh chung

góc EBM = góc IBM (cmt)

=> tam giác EBM = tam giác IBM ( ch - gn)

=> BE = BI ( 2 cạnh tương ứng)

d) Ta có:

ME = MF ( tam giác AEM = tam giác ÀM)

ME = MB ( tam giác EBM = tam giác IBM)

=> MF = MB

=> M là trung điểm của BF ( M thuộc BF)

=> MB = 1/2 IF

Mà ME = MB ( cmt)

Nên ME = 1/2 IF ( đpcm)

7 tháng 12 2015

len google

 

23 tháng 3 2021

Cậu ghi rõ ràng hơn chút được không ạ . Cậu ghi AB AC ; BE BI mình không hiểu đc

11 tháng 12 2018

14 tháng 12 2023

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b:Sửa đề: Chứng minh AE=AF

Ta có: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

Ta có: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

nên EF//BC

d: Xét ΔABN vuông tại B và ΔACN vuông tại C có

AN chung

AB=AC

Do đó: ΔABN=ΔACN

=>BN=CN

=>N nằm trên đường trung trực của BC(1)

Ta có; ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(2)

Từ (1) và (2) suy ra A,M,N thẳng hàng

14 tháng 12 2023

Bạn ơi vì sao góc EAM = góc FAM vậy

7 tháng 7 2018

A B C E F M I

a, Xét t/g AMB và t/g AMC có:

AB=AC(gt)

BAM=CAM(gt)

AM chung

=>t/g AMB=t/g AMC (c.g.c)

b, Xét t/g BEM và t/g CMF có:

góc BEM = góc CFM = 90 độ (gt)

MB = MC (t/g AMB=t/g AMC)

góc EBM = góc FCM (gt)

=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)

=>ME=MF (2 cạnh tương ứng)

c, BI // FC => góc IBM = góc FCM (so le trong)

Xét t/g BIM và t/g CFM có:

góc IBM = góc FCM (vừa chứng minh)

MB = MC (t/g AMB = t/g AMC)

BMI = CMF (đối đỉnh)

=>t/g BIM = t/g CFM (g.c.g)

=>BI = BF (2 cạnh tương ứng) 

Mà BE = CF (t/g BEM = t/g CFM)

=> BE = BI

d, Vì MI = MF (t/g BIM = t/g CFM), ME = MF (câu b)

=> MI = ME

Mà \(MI=\frac{IF}{2}\)

=> \(ME=\frac{IF}{2}\)

13 tháng 7 2019

hình bn tự vẽ nha 

a, Xét hai tam giác vuông AME và AMF có :  

AM là cạnh chung 

\(\widehat{EAM} = \widehat{FAM}\) ( do AM là tia phân giác góc A ) 

=> tam giác AME = tam giác AMF ( cạnh huyền - góc nhọn ) 

=> ME = MF ( hai cạnh tương ứng ) 

b,Do AC // BM  

mà IF vuông góc CA 

=> FI vuông góc với BI ( tính chất đường vuông góc ) 

Do ME vuông góc AB 

MI vuông góc BI 

=> AB // BI ( tính chất hai đường thẳng // ) 

Xét hai tam giác vuông MEB và MIB có 

BM là cạnh chung 

\(\widehat{EMB} = \widehat{MBI}\) ( hai góc so le trong ) 

=> tam giác MEB = tam giác MIB ( cạnh huyền - góc nhọn ) 

=> BE = Bi ( hai cạnh tương ứng ) 

21 tháng 1 2022

Làm thêm hộ mik phần d, tam giác BME= tam giác CMF

 

A B C M I E F

a) _ Xét tam giác AME và tam giác AMF có :

E = F ( = 90 độ)

AM là cạnh huyền chung

A1=A2 ( AM là tia phân giác của BAC)

suy ra : tam giác AME = tam giác AMF ( CH-GN)

suy ra AE = AF ( 2 cạnh tương ứng)

suy ra tam giác AEF cân tại A

vẽ hình tạm nha

~ chúc bn học tốt~

a, Vì Tam giác `ABC` cân tại A `=> AB = AC ;`\(\widehat{B}=\widehat{C}\)

Xét Tam giác `AMB` và Tam giác `AMC` có:

`AM chung`

\(\widehat{B}=\widehat{C}\) `(CMT)`

`MB = MC (g``t)`

`=>` Tam giác `AMB =` Tam giác `AMC (c-g-c)`

b, Vì Tam giác `AMB =` Tam giác `AMC (a)`

`=>` \(\widehat{EAM}=\widehat{FAM}\) (2 góc tương ứng).

Xét Tam giác `EAM` và Tam giác `FAM` có:

AM chung

\(\widehat{EAM}=\widehat{FAM}\) `(CMT)`

\(\widehat{AEM}=\widehat{AFM}=90^0\)

`=>` Tam giác `EAM =` Tam giác `FAM (ch-gn)`

`=> EA = FA` (2 cạnh tương ứng).

c, *câu này mình hơi bí bn ạ:')

loading...

 

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC