Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Xét tứ giác AEHF có:
+\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^o\)
=>AEHF là hình chữ nhật (dhnb)
=>AH cắt ED tại trung điểm mỗi đường (dhnb)
Mà AH=EF
\(\Rightarrow OE=OF=\dfrac{AH}{2}\\ \Rightarrow HB.HC=AH^2\\ \Rightarrow4.OE.OF=AH.FE.AH^2\)
Vậy HB.HC=4.OE.OF
Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>AH cắt EF tại trung điểm của mỗi đường và AH=EF
=>OE=OF=AH/2
=>OE*OF=1/4*AH^2
=>4*OE*OF=AH^2=HB*HC
1: Xét ΔABH vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
2: \(AE\cdot AB+AF\cdot AC=AH^2+AH^2=2AH^2\)
4: \(4\cdot OE\cdot OF=2OE\cdot2OF=FE\cdot AH=AH^2\)
\(HB\cdot HC=AH^2\)
Do đó: \(4\cdot OE\cdot OF=HB\cdot HC\)
Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>AH cắt EF tại trung điểm của mỗi đường và AH=EF
=>OE=OF=AH/2
\(HB\cdot HC=AH^2\)
\(4\cdot OE\cdot OF=AH\cdot FE=AH^2\)
Do đó: \(HB\cdot HC=4\cdot OE\cdot OF\)