K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tự vẽ hình nha =="

AC = AH + HC = 6 + 4 = 10 (cm)

mà AC = AB (tam giác ABC cân tại A)

=> AB = 10 (cm)

Tam giác HAB vuông tại H có:

AB2 = AH2 + BH(định lý Pytago)

102 = 62 + BH2

BH2 = 102 - 62

BH2 = 100 - 36

BH2 = 64

BH = 8 (cm)

Tam giác HBC vuông tại H có:

BC2 = BH2 + CH2

BC2 = 82 + 42

BC2 = 64 + 16

BC2 = 80

BC = 80(cm)80(cm)

Chúc bạn học tốt ^^

Thu gọn
Đúng 0
Bình luận
 
12 tháng 3 2017 lúc 20:14
 
 

Bạn tự vẽ hình nha. Cũng đơn giản lắm....

Xét hai tam giác vuông AHB và BHC có :

AH = HC (= 6cm)

HB là cạnh chung

Do đó : ΔAHB=ΔCHBΔAHB=ΔCHB(cạnh - góc - cạnh)

=> BC = AB ( hai cạnh tương ứng)

Mà AB = AC ( định nghĩa tam giác cân)

=> BC = AB = AH+CH= 12cm

 

Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

=>AH cắt EF tại trung điểm của mỗi đường và AH=EF

=>OE=OF=AH/2

\(HB\cdot HC=AH^2\)

\(4\cdot OE\cdot OF=AH\cdot FE=AH^2\)

Do đó: \(HB\cdot HC=4\cdot OE\cdot OF\)

a) Xét ΔABC vuông tại A có \(\widehat{ACB}=45^0\)(gt)

nên ΔABC vuông cân tại A(Định lí tam giác vuông cân)

Suy ra: AB=AC

mà AB=10cm(gt)

nên AC=10cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{10^2}+\dfrac{1}{10^2}=\dfrac{2}{100}=\dfrac{1}{50}\)

\(\Leftrightarrow AH^2=50\)

hay \(AH=5\sqrt{2}\left(cm\right)\)

Xét ΔABH vuông tại H có \(\widehat{B}=45^0\)(ΔABC vuông cân tại A)

nên ΔABH vuông cân tại H

Suy ra: BH=AH

mà \(AH=5\sqrt{2}\left(cm\right)\)(cmt)

nên \(BH=5\sqrt{2}\left(cm\right)\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{10\cdot10}{2}=50\left(cm^2\right)\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

21 tháng 8 2021

sai rùi đề có phải là tam giác vuông đâu

 

29 tháng 8 2017

2) Sửa lại là: HE.AB+HF.BC=AH.BC

5 tháng 8 2020

a) Áp dụng HTL => \(AE.AB=AH^2\)và \(AF.AC=AH^2\)

<=> Ta lần lượt có \(AE.m=AH^2\)và \(AF.n=AH^2\)

Tiếp tục áp dụng HTL => \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)=> \(\frac{1}{AH^2}=\frac{1}{m^2}+\frac{1}{n^2}=\frac{\left(m^2+n^2\right)}{m^2n^2}\)

<=> \(AH^2=\frac{\left(m^2n^2\right)}{m^2+n^2}\)

=> AE.m=\(\frac{m^2n^2}{m^2+n^2}\)và AF.n=\(\frac{m^2n^2}{m^2+n^2}\) 

=> AE; AF=......

5 tháng 8 2020

b) Lần lượt áp dụng các HTL, ta có: 

\(BE.AE=HE^2\)\(AF.CF=HF^2\)

<=> \(BE.CF.AE.AF=\left(HE.HF\right)^2\)

Do tứ giác AEHF có 3 góc vuông => AEHF là HCN => HE=AF; HF=AE; AH=EF

<=> \(BE.CF.BC=AE.AF.BC\) \(=\frac{AE.AF.BC.AH}{AH}\)\(=\frac{AE.AB.AF.AC}{AH}\)(HTL)\(=\frac{AH^2.AH^2}{AH}=AH^3=EF^3\)(Lại Áp dụng HTL) 

=> \(BC.CF.BC=EF^3\left(đpcm\right)\)

14 tháng 9 2018

Xét ∆ABC có AH là đường cao:

* AH2= BH.HC(HTL)

AH2=4.9

AH2=36

AH=6(cm)

Ta có:BC=BH+HC

BC=4+9

BC=16(cm)

*AB2=BH.BC

AB2=4.16

AB2 = 64

AB=8(cm)

*AC2=HC.B C

AC2=9.16

AC2=144

AC=12(cm)

16 tháng 7 2022

BC = 4+9=13 nha bn

 

6 tháng 9 2019

Bài này cơ bản, áp dụng hệ thức lượng là ra.

6 tháng 9 2019

$\dfrac{AB^2}{AC^2}$ = $\frac{BH}{CH}$
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó lên cạnh huyền, ta có:
$AB^2$ = BC.BH
$AC^2$ = BC. CH
Do đó: $\dfrac{AB^2}{AC^2}$ = $\dfrac{BC.BH}{BC.CH}$ = $\dfrac{BH}{CH}$ (đpcm)

$AE.AB = AF.AC$
Tam giác ABH vuông tại H có EH $\perp$ AB
Do đó: $AH^2$ = AE.AB (1)
Tam giác ACH vuông tại H có FH $\perp$ AC
Do đó: $AH^2$ = AF.AC (2)
Từ (1) và (2) suy ra AE.AB = AF.AC (đpcm)