K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2019

Bài này cơ bản, áp dụng hệ thức lượng là ra.

6 tháng 9 2019

$\dfrac{AB^2}{AC^2}$ = $\frac{BH}{CH}$
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó lên cạnh huyền, ta có:
$AB^2$ = BC.BH
$AC^2$ = BC. CH
Do đó: $\dfrac{AB^2}{AC^2}$ = $\dfrac{BC.BH}{BC.CH}$ = $\dfrac{BH}{CH}$ (đpcm)

$AE.AB = AF.AC$
Tam giác ABH vuông tại H có EH $\perp$ AB
Do đó: $AH^2$ = AE.AB (1)
Tam giác ACH vuông tại H có FH $\perp$ AC
Do đó: $AH^2$ = AF.AC (2)
Từ (1) và (2) suy ra AE.AB = AF.AC (đpcm)

1: Xét ΔABH vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

2: \(AE\cdot AB+AF\cdot AC=AH^2+AH^2=2AH^2\)

4: \(4\cdot OE\cdot OF=2OE\cdot2OF=FE\cdot AH=AH^2\)

\(HB\cdot HC=AH^2\)

Do đó: \(4\cdot OE\cdot OF=HB\cdot HC\)

Câu a bạn tự CM

b) \(\Delta ABH\) vuông tại H có đường cao HE

=> \(AH^2=AE.AB\left(1\right)\)

\(\Delta ACH\) vuông tại H có đường cao HF

=> \(AH^2=AF.AC\left(2\right)\)

Từ (1) và (2) =>\(AE.AB\) \(=AF.AC\)

c) Có : \(AE.AB\) \(=AF.AC\)

=> \(\frac{AE}{AC}=\frac{AF}{AB}\)

\(\Delta AEF\)\(\Delta ACB\) có :

\(\frac{AE}{AC}=\frac{AF}{AB}\)\(\widehat{BAC}:chung\)

=> \(\Delta AEF\) ~ \(\Delta ACB\)

4 tháng 9 2019

a) ΔABH vuông tại H, theo định lý Py-ta-go ta có:

AH2+BH2=AB2 (1)

ΔABC vuông tại A, đường cao AH, theo hệ thức lượng ta có:

=> AB2=BH.BC (2)

Từ (1) và (2) => BH.BC=AH2+BH2 ( = AB2)

4 tháng 9 2019

b) Xét ΔAHB vuông tại H, HE là đường cao

=> AH2=AE.AB (1)

Xét ΔAHC vuông tại H, HF là đường cao

=> AH2=AF.AC (2)

Từ (1) và (2) => AE.AB=AF.AC (AH2)

28 tháng 7 2018

A B C H E F

a) Ta có: \(5^2+12^2=169\)

               \(13^2=169\)

suy ra:  \(5^2+12^2=13^2\)

Vậy tam giác ABC vuông tại A

Áp dụng hệ thức lượng ta có:

  \(AB.AC=AH.BC\)

\(\Leftrightarrow\)\(AH=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}\)

b)  Áp dụng hệ thức lượng ta có:  

\(AH^2=AE.AB\)

\(AH^2=AF.AC\)

suy ra:  \(AE.AB=AF.AC\)

c)  \(AE.AB=AF.AC\) \(\Rightarrow\)\(\frac{AE}{AC}=\frac{AF}{AB}\)

Xét  \(\Delta AEF\)và  \(\Delta ACB\)ta có:

\(\frac{AE}{AC}=\frac{AF}{AB}\)

góc A  chung

suy ra:  \(\Delta AEF~\Delta ACB\)(c.g.c)