Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B H C F N M E
a) \(\hept{\begin{cases}\widehat{HFE}=\widehat{HAE}\\\widehat{HAE}+\widehat{ABH}=90^O\end{cases}\Rightarrow\widehat{HFE}+\widehat{ABH}=90^O}\)
=> \(\widehat{HFE}+\widehat{ABC}=90^O\)(đpcm)
b) AEHF nội tiếp => \(\widehat{AEF}=\widehat{AHF}\)
Mà \(\widehat{AHF}=\widehat{ACB}\)( cùng phụ với \(\widehat{HAC}\))
=> \(\widehat{AEF}=\widehat{ACB}\)
=> BEFC là tứ giác nội tiếp
\(\Rightarrow\hept{\begin{cases}\widehat{EBF}=\widehat{FCE}\\\widehat{BEM}=\widehat{NFC}=90^O\end{cases}\Rightarrow\widehat{EMB}=\widehat{FNC}}\)
\(\Rightarrow\widehat{EMF}=\widehat{ENF}\)
=> EMNF là tứ giác nội tiếp
=> góc ENM = góc EFB
Mà BEFC nội tiếp => góc EFB = góc ECB
Từ 2 điều trên => góc ENM = góc ECB
=> MN // BC => đpcm
Gọi G là trung điểm AH, I là trung điểm EF, MN là đtb tg ABC
Dễ thấy NG//BC;MG//BC nên M,N,G thẳng hàng
Xét tg AEF và tg HEF có AI;HI là trung tuyến ứng vs ch EF nên \(AI=HI=\dfrac{1}{2}EF\)
Do đó tg AIH cân tại I
Mà IG là trung tuyến (G là trung điểm AH) nên IG là đg cao hay \(IG\perp AH\left(1\right)\)
Xét tg AHB vuông tại H có HM là trung tuyến ứng ch AB nên \(AM=HM=\dfrac{1}{2}AB\)
Do đó tg AHM cân tại M
Mà MG là trung tuyến (G là trung điểm AH) nên MG là đg cao hay \(MG\perp AH\left(1\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow MG//GI\)
Từ đó ta được M;G;I thẳng hàng
Do đó I;M;N thẳng hàng
Vậy trung điểm EF là I nằm trên đt cố định là đường trung bình MN của tg ABC
(hình bạn tự vẽ nhá :v )
a) Có goc BAC=90độ=>góc EAF=90độ
HE vuong goc voi AB =>góc HEA=90độ
HF vuong goc voi AC=>góc HFA=90độ
==>AEHF là hình chữ nhật
Có góc ABC=góc EHA
mà góc EHA= góc EFA
góc ABC+OAC=90 độ
=>góc OAC+góc AFE=90 độ =>OA vuông góc với EF
b)có góc PBA=góc PFA
góc APC=góc ABC
mà góc ABC= góc AFP
=>goca PBA= góc APE=>tam giác AEP đồng dạng vs APB (gg)
=>AP^2=AE.AB
mà AH^2=AE.AB
=>tam giac PAH cân
c)
Chứng minh tam giác DKC đồng dạng với tam giác DBA (g-g) , Suy ra DK.DA=DC.DB (1)
Chứng minh Tứ giác BEFC nội tiếp ( góc AEF = góc FCH cùng bắng với góc AHF )
Từ đó chứng minh hai tam giác DFC và DBE đồng dạng (g-g), Suy ra DF.DE=DC.DB (2)
Từ (1) và (2) suy ra DK.DA = DF.DE. Từ đó chứng minh tam giác DKF đồng dạng với DEA (theo trường hợp c-g-c)
Suy ra góc DKF = góc DEA
Suy ra tứ giác AEFK nội tiếp
d) chứng minh được OA vuông góc với PQ.
Suy ra cung AP=cung AQ. suy ra ˆADP=ˆACKADP^=ACK^
=> KFCD nội tiếp => ΔIFC∼ΔIDKΔIFC∼ΔIDK
=> IC.ID=IF.IK. rồi cm IH^2=IF.IK dựa vào tứ giác AKFH nội tiếp do tứ giác AEFK nội tiếp
Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>AH cắt EF tại trung điểm của mỗi đường và AH=EF
=>OE=OF=AH/2
=>OE*OF=1/4*AH^2
=>4*OE*OF=AH^2=HB*HC