K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2022

Bài 3:

a: Để pt có hai nghiệm trái dấu thì m+5<0

=>m<-5

b: \(\text{Δ}=\left(m+2\right)^2-4\left(m+5\right)\)

\(=m^2+4m+4-4m-20=m^2-16\)

Để phương trình có hai nghiệm phân biệt thì m^2-16>0

=>m>4 hoặc m<-4

c: x1^2+x2^2=23

=>(x1+x2)^2-2x1x2=23

=>(m+2)^2-2(m+5)=23

=>m^2+4m+4-2m-10-23=0

=>m^2+2m-29=0

hay \(m=-1\pm\sqrt{30}\)

d: Để pt có hai nghiệm âm phân biệt thì

\(\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\m+2< 0\\m+5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\-5< m< -2\end{matrix}\right.\Leftrightarrow m\in[-4;-2)\)

NV
9 tháng 11 2019

Đặt \(x^2=t\ge0\Rightarrow\left(m-1\right)t^2+2t-3=0\) (1)

Với \(m=1\Rightarrow t=\frac{3}{2}\)

Với \(m\ne1\Rightarrow\Delta'=1+3\left(m-1\right)=3m-2\)

a/ \(m=1\) ko thỏa mãn

Để pt vô nghiệm \(\Rightarrow\Delta'< 0\Rightarrow m< \frac{2}{3}\) hoặc (1) có 2 nghiệm đều âm

\(\Rightarrow\left\{{}\begin{matrix}t_1+t_2=\frac{2}{1-m}< 0\\t_1t_2=\frac{3}{1-m}>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

Vậy \(m< \frac{2}{3}\)

b/ Để pt có đúng 1 nghiệm \(\Leftrightarrow\left(1\right)\) có đúng 1 nghiệm \(t=0\Rightarrow-3=0\) (vô lý)

Vậy ko tồn tại m thỏa mãn

c/ Để pt có 2 nghiệm pb \(\Rightarrow\left(1\right)\) có đúng 1 nghiệm dương

\(m=1\) thỏa mãn

Với \(m\ne1\):

TH1: \(\Delta'=0\Rightarrow m=\frac{2}{3}\Rightarrow t=\frac{1}{1-m}=3>0\) thỏa mãn

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\t_1t_2< 0\end{matrix}\right.\) \(\Rightarrow\frac{3}{1-m}< 0\Rightarrow1-m< 0\Rightarrow m>1\)

Vậy: \(\left\{{}\begin{matrix}m=\frac{2}{3}\\m\ge1\end{matrix}\right.\)

NV
9 tháng 11 2019

d/ Để pt đã cho có 3 nghiệm pb \(\Leftrightarrow\left(1\right)\) có 1 nghiệm bằng 0 và 1 nghiệm dương

\(\Rightarrow-3=0\) (vô lý)

Không tồn tại m thỏa mãn

e/ Để pt có 4 nghiệm pb \(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}3m-2>0\\t_1+t_2>0\\t_1t_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>\frac{2}{3}\\\frac{2}{1-m}>0\\\frac{3}{1-m}>0\end{matrix}\right.\)

\(\Rightarrow\frac{2}{3}< m< 1\)

12 tháng 2 2020

Akai HarumaAce LegonaNguyễn Thanh HằngNguyễn Huy TúMysterious PersonVõ Đông Anh TuấnNguyễn Thanh HằngVũ Minh Tuấn

Bài 3: 

\(\text{Δ}=1^2-4\cdot2\cdot\left(-4m-2\right)\)

=1+8(4m-2)

=32m-16+1=32m-15

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>32m-15>0

hay m>15/32

Để phương trình vô nghiệm thì 32m-15<0

hay m<15/32

Để phương trình có nghiệm kép thì 32m-15=0

hay m=15/32

Bài 2: 

a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)

\(=16m^2+16m+4-16m-12=16m^2-8\)

Để phương trình có hai nghiệm thì \(2m^2>=1\)

=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)

c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)

\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)

\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)

\(=64m^3+96m^2+48m+8-48m^2-60m-18\)

\(=64m^3+48m^2-12m-10\)

2 tháng 2 2020

1,

a, với m=1 , phương trình có nghiệm x=\(\frac{1}{2}\)

với m\(\ne1\) , \(_{\Delta}\)=m

- nếu m< 0 : pt vô nghiệm

-nếu m=0: pt có 1 nghiệm kép x=1

-nếu m>0( và m\(\ne\)1) : pt có 2 nghiệm

\(x_1=\frac{-1-\sqrt{m}}{m-1}\)\(x_2=\frac{-1+\sqrt{m}}{m-1}\)

b, pt có 2 nghiệm trái dấu nếu

m-1\(\ne\)0 và \(\frac{-1}{m-1}\)<0 \(\Leftrightarrow\)m>1

c, \(m\ne1\) và m>0, pt có 2 nghiệm x1 và x2

1=x12 +x22=(x1+x2)2-2x1x2=\(\left(\frac{2}{m-1}\right)^2+\frac{2}{m-1}\Rightarrow m=2+\sqrt{5}\)

2 tháng 2 2020

2,

giả sử 2 pt đều có nghiệm thì phải có:

\(\Delta_1=1-4a\ge0\)\(\Delta_2=a^2-4\ge0\Leftrightarrow a\le-2\)

giả sử k là 1 nghiệm chung thì ta phải có:

k2+k+a=k2+ka+1

\(\Rightarrow\) k(a-1)=a-1 \(\Rightarrow\)k=1 (vì \(a\le-2\) nên a-1\(\ne\)0)

thay k=1 vào 1 pt ta tính được a=-2

thử lại: a=-2 vào các pt ta thấy dúng là 2 pt có nghiệm chung là x=1