Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Để pt có hai nghiệm trái dấu thì m+5<0
=>m<-5
b: \(\text{Δ}=\left(m+2\right)^2-4\left(m+5\right)\)
\(=m^2+4m+4-4m-20=m^2-16\)
Để phương trình có hai nghiệm phân biệt thì m^2-16>0
=>m>4 hoặc m<-4
c: x1^2+x2^2=23
=>(x1+x2)^2-2x1x2=23
=>(m+2)^2-2(m+5)=23
=>m^2+4m+4-2m-10-23=0
=>m^2+2m-29=0
hay \(m=-1\pm\sqrt{30}\)
d: Để pt có hai nghiệm âm phân biệt thì
\(\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\m+2< 0\\m+5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\-5< m< -2\end{matrix}\right.\Leftrightarrow m\in[-4;-2)\)
Phương trình có hai nghiệm phân biệt
<=> \(\Delta'=\left(m+1\right)^2-\left(m+1\right)=\left(m+1\right)\left(m+1-1\right)=m\left(m+1\right)>0\)
<=> \(\orbr{\begin{cases}m>0\\m< -1\end{cases}}\)(@@)
Theo định lí vi et ta có: \(x_1x_2=m+1;x_2+x_2=-2\left(m+1\right)\)
Theo bài ra: \(\left(x_1-1\right)\left(x_2-1\right)< 0\)
<=> \(x_1x_2-\left(x_1+x_2\right)+1< 0\)
<=> 3 ( m + 1 ) + 1 < 0
<=> m < -4/3 thỏa mãn @@
Vậy...
Bài 2:
a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)
\(=16m^2+16m+4-16m-12=16m^2-8\)
Để phương trình có hai nghiệm thì \(2m^2>=1\)
=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)
c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)
\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)
\(=64m^3+96m^2+48m+8-48m^2-60m-18\)
\(=64m^3+48m^2-12m-10\)
Để phương trình có 2 nghiệm phân biệt :
\(\Delta>0< =>\left(-2\right)^2-4\left(-m\right)>0\)
\(< =>4+4m>0\)
\(< =>4m>-4\)
\(< =>m>-1\)
\(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-3m\right)\)
\(=4m^2-8m+4-4m^2+12m=4m+4\)
Để phương trình có nghiệm thì 4m+4>=0
hay m>=-1
a: Ta có: \(\left(m-1\right)x^2-2x-m+1=0\)
a=m-1; b=-2; c=-m+1
\(ac=\left(m-1\right)\left(-m+1\right)=-\left(m-1\right)^2< 0\forall m\)
Do đó: Phương trình luôn có hai nghiệm trái dấu
b: \(x_1^2+x_2^2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow\left(\dfrac{2}{m-1}\right)^2-2\cdot\dfrac{-m+1}{m-1}=6\)
\(\Leftrightarrow\dfrac{4}{\left(m-1\right)^2}=4\)
\(\Leftrightarrow\left(m-1\right)^2=1\)
=>m-1=1 hoặc m-1=-1
=>m=2 hoặc m=0
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)-m-1=0\)
\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)-m-1=0\)
Đặt \(x^2+6x+7=\left(x+3\right)^2-2=t\ge-2\) ta được:
\(\left(t-2\right)\left(t+1\right)-m-1=0\)
\(\Leftrightarrow t^2-t-m-3=0\) (1)
a/ Bạn tự giải (thay số bấm máy ez)
b/ Pt có nghiệm thỏa \(x^2+6x+7\le0\) khi và chỉ khi (1) có nghiệm \(t\in\left[-2;0\right]\)
Ta có: \(\left(1\right)\Leftrightarrow t^2-t-3=m\)
Xét hàm \(f\left(t\right)=t^2-t-3\) trên \(\left[-2;0\right]\)
\(a=1>0;\) \(-\frac{b}{2a}=\frac{1}{2}>0\Rightarrow f\left(t\right)\) nghịch biến trên \(\left[-2;0\right]\)
\(\Rightarrow f\left(0\right)\le f\left(t\right)\le f\left(-2\right)\Rightarrow-3\le f\left(t\right)\le3\)
\(\Rightarrow-3\le m\le3\)
1,
a, với m=1 , phương trình có nghiệm x=\(\frac{1}{2}\)
với m\(\ne1\) , \(_{\Delta}\)=m
- nếu m< 0 : pt vô nghiệm
-nếu m=0: pt có 1 nghiệm kép x=1
-nếu m>0( và m\(\ne\)1) : pt có 2 nghiệm
\(x_1=\frac{-1-\sqrt{m}}{m-1}\) và \(x_2=\frac{-1+\sqrt{m}}{m-1}\)
b, pt có 2 nghiệm trái dấu nếu
m-1\(\ne\)0 và \(\frac{-1}{m-1}\)<0 \(\Leftrightarrow\)m>1
c, \(m\ne1\) và m>0, pt có 2 nghiệm x1 và x2
1=x12 +x22=(x1+x2)2-2x1x2=\(\left(\frac{2}{m-1}\right)^2+\frac{2}{m-1}\Rightarrow m=2+\sqrt{5}\)
2,
giả sử 2 pt đều có nghiệm thì phải có:
\(\Delta_1=1-4a\ge0\) và \(\Delta_2=a^2-4\ge0\Leftrightarrow a\le-2\)
giả sử k là 1 nghiệm chung thì ta phải có:
k2+k+a=k2+ka+1
\(\Rightarrow\) k(a-1)=a-1 \(\Rightarrow\)k=1 (vì \(a\le-2\) nên a-1\(\ne\)0)
thay k=1 vào 1 pt ta tính được a=-2
thử lại: a=-2 vào các pt ta thấy dúng là 2 pt có nghiệm chung là x=1