K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2022

Bài 3:

a: Để pt có hai nghiệm trái dấu thì m+5<0

=>m<-5

b: \(\text{Δ}=\left(m+2\right)^2-4\left(m+5\right)\)

\(=m^2+4m+4-4m-20=m^2-16\)

Để phương trình có hai nghiệm phân biệt thì m^2-16>0

=>m>4 hoặc m<-4

c: x1^2+x2^2=23

=>(x1+x2)^2-2x1x2=23

=>(m+2)^2-2(m+5)=23

=>m^2+4m+4-2m-10-23=0

=>m^2+2m-29=0

hay \(m=-1\pm\sqrt{30}\)

d: Để pt có hai nghiệm âm phân biệt thì

\(\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\m+2< 0\\m+5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\-5< m< -2\end{matrix}\right.\Leftrightarrow m\in[-4;-2)\)

Bài 2: 

a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)

\(=16m^2+16m+4-16m-12=16m^2-8\)

Để phương trình có hai nghiệm thì \(2m^2>=1\)

=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)

c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)

\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)

\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)

\(=64m^3+96m^2+48m+8-48m^2-60m-18\)

\(=64m^3+48m^2-12m-10\)

29 tháng 11 2019
https://i.imgur.com/DsuSfIq.jpg
29 tháng 11 2019
https://i.imgur.com/LOVvDRi.jpg
13 tháng 6 2020

Phương trình có hai nghiệm phân biệt

<=> \(\Delta'=\left(m+1\right)^2-\left(m+1\right)=\left(m+1\right)\left(m+1-1\right)=m\left(m+1\right)>0\)

<=> \(\orbr{\begin{cases}m>0\\m< -1\end{cases}}\)(@@)

Theo định lí vi et ta có: \(x_1x_2=m+1;x_2+x_2=-2\left(m+1\right)\)

Theo bài ra: \(\left(x_1-1\right)\left(x_2-1\right)< 0\)

<=> \(x_1x_2-\left(x_1+x_2\right)+1< 0\)

<=> 3 ( m + 1 ) + 1 < 0 

<=> m  < -4/3 thỏa mãn @@ 

Vậy...

30 tháng 6 2018

a) ta có \(\Delta=\left(-m\right)^2-4\left(-1\right)1=m^2+4\ge4>0\forall m\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt (đpcm)

bài này nếu ai lanh sẽ thấy hệ số \(a\)\(c\) trái dấu nên \(\Rightarrow\) (đpcm) luôn ; không cần trình bày dài dòng .

b) vì phương trình đã luôn có 2 nghiệm phân biệt rồi nên không cần tìm điện kiện để phương trình có 2 nghiệm phân biệt nữa .

áp dụng hệ thức vi - ét ta có : \(\left\{{}\begin{matrix}x_1x_2=-1\\x_1+x_2=-m\end{matrix}\right.\)

ta có : \(x_1^2+x_2^2=5\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5\)

\(\Leftrightarrow\left(-m\right)^2-2\left(-1\right)=m^2+2=5\) \(\Leftrightarrow m^2=3\Leftrightarrow m=\pm\sqrt{3}\)

vậy \(m=-\sqrt{3};m=\sqrt{3}\)

NV
6 tháng 11 2019

\(\Leftrightarrow\left(x-1\right)\left(x^2-\left(3m-1\right)x-3m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-\left(3m-1\right)x-3m-2=0\left(1\right)\end{matrix}\right.\)

Do vai trò 3 nghiệm như nhau, giả sử \(x_3=1\)\(x_1;x_2\) là 2 nghiệm của (1)

Để pt có 3 nghiệm pb \(\Leftrightarrow\left\{{}\begin{matrix}\left(3m-1\right)^2+4\left(3m+2\right)>0\\1-\left(3m-1\right)-3m-2\ne0\end{matrix}\right.\) \(\Rightarrow m\ne-\frac{1}{3}\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=3m-1\\x_1x_2=-3m-2\end{matrix}\right.\)

\(x_1^2+x_2^2+x_3^2>15\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+1>15\)

\(\Leftrightarrow\left(3m-1\right)^2+2\left(3m+2\right)-14>0\)

\(\Leftrightarrow9m^2>9\Rightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)