K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

a) ta có \(\Delta=\left(-m\right)^2-4\left(-1\right)1=m^2+4\ge4>0\forall m\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt (đpcm)

bài này nếu ai lanh sẽ thấy hệ số \(a\)\(c\) trái dấu nên \(\Rightarrow\) (đpcm) luôn ; không cần trình bày dài dòng .

b) vì phương trình đã luôn có 2 nghiệm phân biệt rồi nên không cần tìm điện kiện để phương trình có 2 nghiệm phân biệt nữa .

áp dụng hệ thức vi - ét ta có : \(\left\{{}\begin{matrix}x_1x_2=-1\\x_1+x_2=-m\end{matrix}\right.\)

ta có : \(x_1^2+x_2^2=5\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5\)

\(\Leftrightarrow\left(-m\right)^2-2\left(-1\right)=m^2+2=5\) \(\Leftrightarrow m^2=3\Leftrightarrow m=\pm\sqrt{3}\)

vậy \(m=-\sqrt{3};m=\sqrt{3}\)

26 tháng 7 2016

a) Ta có: \(\Delta\) = (-2m)2 - 4.1.(m-2) = 4m2 - 4m + 8 = (4m2 - 4m + 1) + 7 = (2m-1)2 + 7 \(\ge\) 7 > 0 x do đo (1) luôn có 2 nghiệm với mọi m.

30 tháng 11 2022

Bài 3:

a: Để pt có hai nghiệm trái dấu thì m+5<0

=>m<-5

b: \(\text{Δ}=\left(m+2\right)^2-4\left(m+5\right)\)

\(=m^2+4m+4-4m-20=m^2-16\)

Để phương trình có hai nghiệm phân biệt thì m^2-16>0

=>m>4 hoặc m<-4

c: x1^2+x2^2=23

=>(x1+x2)^2-2x1x2=23

=>(m+2)^2-2(m+5)=23

=>m^2+4m+4-2m-10-23=0

=>m^2+2m-29=0

hay \(m=-1\pm\sqrt{30}\)

d: Để pt có hai nghiệm âm phân biệt thì

\(\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\m+2< 0\\m+5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\-5< m< -2\end{matrix}\right.\Leftrightarrow m\in[-4;-2)\)

NV
6 tháng 3 2020

\(a+b+c=1-m+m-1=0\)

Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\)

Để pt có 2 nghiệm pb \(\Rightarrow m\ne2\)

\(\left(x_1+x_2\right)^2-8x_1x_2-8=0\)

\(\Leftrightarrow m^2-8\left(m-1\right)-8=0\)

\(\Leftrightarrow m^2-8m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=8\end{matrix}\right.\)

29 tháng 11 2019
https://i.imgur.com/DsuSfIq.jpg
29 tháng 11 2019
https://i.imgur.com/LOVvDRi.jpg
NV
1 tháng 5 2020

1.

\(\Delta'=1-m>0\Rightarrow m< 1\)

Để pt có 2 nghiệm t/m đề bài

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\frac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2< 4\end{matrix}\right.\) \(\Rightarrow0< m< 1\)

2. Để pt có 2 nghiệm pb

\(\left\{{}\begin{matrix}m\ne2\\\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m< 6\end{matrix}\right.\)

Để 2 nghiệm đều dương: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m}{m-2}>0\\x_1x_2=\frac{m+3}{m-2}>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -3\end{matrix}\right.\)

Kết hợp lại: \(\left[{}\begin{matrix}2< m< 6\\m< -3\end{matrix}\right.\)

3. Đặt \(f\left(x\right)=\left(m-3\right)x^2+\left(m-1\right)x+m\)

Để pt có 2 nghiệm thỏa mãn đề bài

\(\Leftrightarrow\left(m-3\right).f\left(2\right)< 0\)

\(\Leftrightarrow\left(m-3\right)\left(7m-14\right)< 0\Rightarrow2< m< 3\)