K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2022

Ptrình :  \(x^2-7x+10=0\)

Ta có : \(\Delta=\left(-7\right)^2-4.1.10=9>0\)

=> Phương trình có 2 nghiệm phân biệt \(x1\) và \(x2\)

\(x1=\dfrac{-\left(-7\right)+\sqrt{\Delta}}{2.1}=\dfrac{7+\sqrt{9}}{2}=5\)

\(x2=\dfrac{-\left(-7\right)-\sqrt{\Delta}}{2.1}=\dfrac{7-\sqrt{9}}{2}=2\)

Vậy :

A = \(x_1^2+x_2^2+3x_1x_2=5^2+2^2+3.5.2=59\)  

B = .................

.... (có x1 và x2 rồi thik thay vào lak tính đc, cái này bn tự tính nha)

13 tháng 5 2017

Theo hệ thức viet thì đáp án là câu d(đk là a khác 0)

1 tháng 6 2017

chọn câu d)

a: \(\left\{{}\begin{matrix}x_1+x_2=-b\\x_1x_2=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=10\\c=-24\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}x_1+x_2=-b\\x_1x_2=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-b=-5\\c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=5\\c=0\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=1-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2\\c=-1\end{matrix}\right.\)

d: \(\left\{{}\begin{matrix}x_1+x_2=3-\dfrac{1}{2}=\dfrac{5}{2}\\x_1x_2=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{5}{2}\\c=-\dfrac{3}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
22 tháng 4 2018

Lời giải:

Áp dụng định lý Viete ta có:
\(\left\{\begin{matrix} x_1+x_2=7\\ x_1x_2=3\end{matrix}\right.\)

Do đó:

\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{7}{3}\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1x_2}=\frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{49-6}{3}=\frac{43}{3}\)

Có: \(\frac{7}{3}+\frac{43}{3}=\frac{50}{3}; \frac{7}{3}.\frac{43}{3}=\frac{301}{9}\)

Áp dụng định lý Viete đảo thì \(\frac{7}{3}; \frac{43}{3}\) là nghiệm của PT:

\(X^2-\frac{50}{3}X+\frac{301}{9}=0\)

\(\Leftrightarrow 9X^2-150X+301=0\)

23 tháng 4 2018

nana

4 tháng 4 2017

a) 2x2 – 17x + 1 = 0 có a = 2, b = -17, c = 1

∆ = (-17)2 – 4 . 2 . 1 = 289 – 8 = 281

x1 + x2 = = ; x1x2 =

b) 5x2 – x + 35 = 0 có a = 5, b = -1, c = -35

∆ = (-1)2 – 4 . 5 . (-35) = 1 + 700 = 701

x1 + x2 = = ; x1x2 = = -7

c) 8x2 – x + 1 = 0 có a = 8, b = -1, c = 1

∆ = (-1)2 – 4 . 8 . 1 = 1 - 32 = -31 < 0

Phương trình vô nghiệm nên không thể điền vào ô trống được.

d) 25x2 + 10x + 1 = 0 có a = 25, b = 10, c = 1

∆ = 102 – 4 . 25 . 1 = 100 - 100 = 0

x1 + x2 = = ; x1x2 =



4 tháng 4 2017

a) 2x2 – 17x + 1 = 0 có a = 2, b = -17, c = 1

∆ = (-17)2 – 4 . 2 . 1 = 289 – 8 = 281

x1 + x2 = = ; x1x2 =

b) 5x2 – x + 35 = 0 có a = 5, b = -1, c = -35

∆ = (-1)2 – 4 . 5 . (-35) = 1 + 700 = 701

x1 + x2 = = ; x1x2 = = -7

c) 8x2 – x + 1 = 0 có a = 8, b = -1, c = 1

∆ = (-1)2 – 4 . 8 . 1 = 1 - 32 = -31 < 0

Phương trình vô nghiệm nên không thể điền vào ô trống được.

d) 25x2 + 10x + 1 = 0 có a = 25, b = 10, c = 1

∆ = 102 – 4 . 25 . 1 = 100 - 100 = 0

x1 + x2 = = ; x1x2 =

NV
8 tháng 4 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)

Ta có:

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=12^2-2.4=136\)

\(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=12+2\sqrt{4}=16\Rightarrow\sqrt{x_1}+\sqrt{x_2}=4\)

\(\Rightarrow T=\dfrac{136}{4}=34\)

8 tháng 4 2022

pt đã cho có \(\Delta'=\left(-6\right)^2-1.4=32>0\)

\(\Rightarrow\)pt đã cho có 2 nghiệm phân biệt 

Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=12\\x_1x_2=4\end{cases}}\)

Ta có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=12^2-2.4=136\)

Mặt khác \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=12+2\sqrt{4}=16\)\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=4\)

\(\Rightarrow T=\frac{136}{4}=34\)

21 tháng 3 2017

ta thấy pt luôn có no . Theo hệ thức Vi - ét ta có:

x1 + x2 = \(\dfrac{-b}{a}\) = 6

x1x2 = \(\dfrac{c}{a}\) = 1

a) Đặt A = x1\(\sqrt{x_1}\) + x2\(\sqrt{x_2}\) = \(\sqrt{x_1x_2}\)( \(\sqrt{x_1}\) + \(\sqrt{x_2}\) )

=> A2 = x1x2(x1 + 2\(\sqrt{x_1x_2}\) + x2)

=> A2 = 1(6 + 2) = 8

=> A = 2\(\sqrt{3}\)

b) bạn sai đề

13 tháng 5 2017

Câu a: -x1,-x2 là nghiệm của ptr x2-(-x1-x2)x+x1x2=0
<=>x2-px-5=0(x1+x2=-p,x1x2=-5)

Câu b: \(\dfrac{1}{x_{1}}\),\(\dfrac{1}{x_{2}}\)là nghiệm của ptr: t2-(\(\dfrac{1}{x_{1}}\)+\(\dfrac{1}{x_{2}}\))+\(\dfrac{1}{x_{1}x_{2}}\)=0
<=>t2-\(\dfrac{p}{5}\)x-\(\dfrac{1}{5}\)=0

Chọn B