K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 4 2018

Lời giải:

Áp dụng định lý Viete ta có:
\(\left\{\begin{matrix} x_1+x_2=7\\ x_1x_2=3\end{matrix}\right.\)

Do đó:

\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{7}{3}\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1x_2}=\frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{49-6}{3}=\frac{43}{3}\)

Có: \(\frac{7}{3}+\frac{43}{3}=\frac{50}{3}; \frac{7}{3}.\frac{43}{3}=\frac{301}{9}\)

Áp dụng định lý Viete đảo thì \(\frac{7}{3}; \frac{43}{3}\) là nghiệm của PT:

\(X^2-\frac{50}{3}X+\frac{301}{9}=0\)

\(\Leftrightarrow 9X^2-150X+301=0\)

23 tháng 4 2018

nana

8 tháng 2 2019

a) Khi m = 4, phương trình (1) trở thành:

\(x^2-4x+4-1=0\\ \Leftrightarrow x^2-4x+3=0\)

Ta có:\(a=1,b=-4,c=3\)

\(\Delta=b^2-4ac=\left(-4\right)^2-4.1.3=4\)

\(\sqrt{\Delta}=\sqrt{4}=2>0\)

Phương trình có hai nghiệm phương biệt

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-4\right)+2}{2}=3\\ x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-4\right)-2}{2}=1\)

Vậy nghiệm phương trình là S = {3; 1}

Câu b : \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)

Suy ra phương trình có hai nghiệm .

Theo hệ thức vi-et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề bài ta lại có :

\(\dfrac{x_1+x_2}{x_1x_2}=\dfrac{x_1+x_2}{2011}\)

\(\Leftrightarrow\dfrac{m}{m-1}=\dfrac{m}{2011}\)

\(\Leftrightarrow m^2-2012m=0\)

\(\Leftrightarrow m\left(m-2012\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2012\end{matrix}\right.\)

21 tháng 4 2018
https://i.imgur.com/0mWaEdv.jpg
21 tháng 4 2018

Hình như bn chưa giải xong thì phải

DD
11 tháng 4 2021

\(\frac{1-x_1}{1+x_2}+\frac{1-x_2}{1+x_1}=\frac{\left(1-x_1\right)\left(1+x_1\right)+\left(1-x_2\right)\left(1+x_2\right)}{\left(1+x_2\right)\left(1+x_1\right)}=\frac{1-x_1^2+1-x_2^2}{1+x_1+x_2+x_1x_2}\)

\(=\frac{2-\left(x_1+x_2\right)^2+2x_1x_2}{3+x_1x_2}=\frac{2x_1x_2-2}{x_1x_2+3}=\frac{4m^2+2}{2m^2-7}\)

Suy ra \(\left(2x_1x_2-2\right)\left(2m^2-7\right)=\left(x_1x_2+3\right)\left(4m^2+2\right)\)

\(\Leftrightarrow x_1x_2\left(4m^2-14\right)-4m^2+14=x_1x_2\left(4m^2+2\right)+12m^2+6\)

\(\Leftrightarrow x_1x_2=\frac{-16m^2+8}{16}=-m^2+\frac{1}{2}\)

Từ đây ta viết được phương trình bậc hai phải tìm theo Thalet đảo. 

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

Lời giải:

Trước tiên để pt có 2 nghiệm $x_1,x_2$ thì:

\(\Delta=(2-m)^2-4(m+3)>0\)

\(\Leftrightarrow m^2-8m-8>0(*)\)

Áp dụng định lý Viete ta có: \(\left\{\begin{matrix} x_1+x_2=2-m\\ x_1x_2=m+3\end{matrix}\right.\)

ĐK \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{3}{2}\) trước tiên đòi hỏi $x_1,x_2\neq 0$ hay \(m+3\neq 0\Rightarrow m\neq -3\)

Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{3}{2}\)

\(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=\frac{3}{2}\)

\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{3}{2}\)

\(\Leftrightarrow \frac{(2-m)^2-2(m+3)}{m+3}=\frac{3}{2}\)

\(\Leftrightarrow \frac{(2-m)^2}{m+3}=\frac{7}{2}\Rightarrow 2(2-m)^2=7(m+3)\)

\(\Rightarrow 2m^2-15m-13=0\)

\(\Rightarrow m=\frac{15\pm \sqrt{329}}{4}\). Kết hợp với đk $(*)$ ta thấy không tồn tại $m$ thỏa mãn

4 tháng 4 2017

a) 2x2 – 17x + 1 = 0 có a = 2, b = -17, c = 1

∆ = (-17)2 – 4 . 2 . 1 = 289 – 8 = 281

x1 + x2 = = ; x1x2 =

b) 5x2 – x + 35 = 0 có a = 5, b = -1, c = -35

∆ = (-1)2 – 4 . 5 . (-35) = 1 + 700 = 701

x1 + x2 = = ; x1x2 = = -7

c) 8x2 – x + 1 = 0 có a = 8, b = -1, c = 1

∆ = (-1)2 – 4 . 8 . 1 = 1 - 32 = -31 < 0

Phương trình vô nghiệm nên không thể điền vào ô trống được.

d) 25x2 + 10x + 1 = 0 có a = 25, b = 10, c = 1

∆ = 102 – 4 . 25 . 1 = 100 - 100 = 0

x1 + x2 = = ; x1x2 =



4 tháng 4 2017

a) 2x2 – 17x + 1 = 0 có a = 2, b = -17, c = 1

∆ = (-17)2 – 4 . 2 . 1 = 289 – 8 = 281

x1 + x2 = = ; x1x2 =

b) 5x2 – x + 35 = 0 có a = 5, b = -1, c = -35

∆ = (-1)2 – 4 . 5 . (-35) = 1 + 700 = 701

x1 + x2 = = ; x1x2 = = -7

c) 8x2 – x + 1 = 0 có a = 8, b = -1, c = 1

∆ = (-1)2 – 4 . 8 . 1 = 1 - 32 = -31 < 0

Phương trình vô nghiệm nên không thể điền vào ô trống được.

d) 25x2 + 10x + 1 = 0 có a = 25, b = 10, c = 1

∆ = 102 – 4 . 25 . 1 = 100 - 100 = 0

x1 + x2 = = ; x1x2 =

21 tháng 3 2017

ta thấy pt luôn có no . Theo hệ thức Vi - ét ta có:

x1 + x2 = \(\dfrac{-b}{a}\) = 6

x1x2 = \(\dfrac{c}{a}\) = 1

a) Đặt A = x1\(\sqrt{x_1}\) + x2\(\sqrt{x_2}\) = \(\sqrt{x_1x_2}\)( \(\sqrt{x_1}\) + \(\sqrt{x_2}\) )

=> A2 = x1x2(x1 + 2\(\sqrt{x_1x_2}\) + x2)

=> A2 = 1(6 + 2) = 8

=> A = 2\(\sqrt{3}\)

b) bạn sai đề

a: x1+x2=-2; x1x2=-4

x1+x2+2+2=-2+2+2=2

(x1+2)(x2+2)=x1x2+2(x1+x2)+4

=-4+2*(-2)+4=-4

Phương trình cần tìm là x^2-2x-4=0

b: \(\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}=\dfrac{x_1+x_2+2}{\left(x_1+1\right)\left(x_2+1\right)}\)

\(=\dfrac{x_1+x_2+2}{x_1x_2+\left(x_1+x_2\right)+1}\)

\(=\dfrac{-2+2}{-4+\left(-2\right)+1}=0\)

\(\dfrac{1}{x_1+1}\cdot\dfrac{1}{x_2+1}=\dfrac{1}{x_1x_2+x_1+x_2+1}=\dfrac{1}{-4-2+1}=\dfrac{-1}{5}\)

Phương trình cần tìm sẽ là; x^2-1/5=0

c: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{x_1^2+x_2^2}{x_1x_2}=\dfrac{\left(-2\right)^2-2\cdot\left(-4\right)}{-4}=\dfrac{4+8}{-4}=-3\)

x1/x2*x2/x1=1

Phương trình cần tìm sẽ là:

x^2+3x+1=0