Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(A=a^{2}+b^{2}+c^{2}+d^{2}+e^{2}-a-b-c-d-e=a\left ( a-1 \right )+b\left ( b-1 \right )+c\left ( c-1 \right )+d\left ( d-1 \right )+e\left ( e-1 \right )\)
Mà a , a-1 là 2 số nguyên liên tiếp
\(\Rightarrow a\left ( a-1 \right )\vdots 2\)
Theo chứng minh trên
\(\Rightarrow b\left ( b-1 \right ),c\left ( c-1 \right ), d\left ( d-1 \right ), e\left ( e-1 \right )\vdots 2\)
\(\Rightarrow A\vdots 2\) mà \(a^{2}+b^{2}+c^{2}+d^{2}+e^{2}\vdots 2\)
\(\Rightarrow a+b+c+d+e\vdots 2\)
MÀ a,b,c,d,e nguyên dương nên \(a+b+c+d+e > 2\)
\(\Rightarrow a+b+c+d+e\) là hợp số.
1) Vì mẫu của chúng không chứa ước nguyên tố khác 2 và 5:
3/8 có mẫu 8 = 2^3
-7/5 có mẫu 5 = 5
13/20 có mẫu 20 = 2^2 . 5
-13/125 có mẫu 125 = 5^3
Nên: các phân số trên viết được dưới dạng số thập phân hữu hạn
Ta có: 3/8 = 0,375
-7/5 = -1,4
13/20 = 0,65
-13/125 = -0,104
Ta có: b2=ac\(\Rightarrow\frac{b}{c}=\frac{a}{b}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{2016.b}{2016.c}\)(1)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{2016.b}{2016.c}=\frac{a+2016.b}{b+2016.c}\)(2)
Từ (1) và (2) ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{a+2016.b}{b+2016.c}\)
\(\Rightarrow\frac{\left(a+2016.b\right)^2}{\left(b+2016.c\right)^2}=\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}\)(vì \(\frac{a}{b}=\frac{b}{c}\))\(=\frac{a}{c}\)(điều phải chứng minh)
tui cũng ko biết đâu
@phùng thị ngọc khánh, bạn không biết thì đừng bình luận linh tinh nhé.