Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc bạn viết nhầm đề, cho \(a=b=c=1\) đâu có đúng
Sửa lại đề: cho \(abc=1\) chứng minh \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\)
Ta có
\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{c}{ac+c+abc}\)
\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{c}{c\left(a+1+ab\right)}\)
\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{ab+a+1}+\dfrac{1}{ab+a+1}\)
\(=\dfrac{a+ab+1}{ab+a+1}=1\) (đpcm)
mình nghĩ đề thế này, do bạn ko viết a+1,b+1,c+1 dưới mẫu
Cho abc = 1 . CMR : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\)
GIẢI
Ta có : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{abc}{a^2bc+abc+ab}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)
\(=\frac{ab+a+1}{ab+a+1}=1\)
\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{ac}{abc+ac+1}+\dfrac{ab}{abc+ab+1}+\dfrac{bc}{abc+bc+1}\)
\(=\dfrac{ac}{ac+2}+\dfrac{ab}{ab+2}+\dfrac{bc}{bc+2}\)
\(=abc\left(\dfrac{b}{abc+2}+\dfrac{c}{abc+2}+\dfrac{a}{abc+2}\right)\)
\(=1.1=1\)(đpcm).
Vậy \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\).
(a,b,c khác 0 nữa)
\(\dfrac{ab+1}{b}=\dfrac{bc+1}{c}=\dfrac{ca+1}{a}\)
\(\Leftrightarrow a+\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=\dfrac{c-b}{bc}\\b-c=\dfrac{a-c}{ca}\\c-a=\dfrac{b-a}{ab}\end{matrix}\right.\)(1)
Xét a=b hoặc b=c hoặc c=a thì=>a=b=c
Xét \(a\ne b\ne c\)
\(\left(1\right)\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)=\dfrac{\left(c-b\right)\left(a-c\right)\left(b-a\right)}{a^2b^2c^2}\)
\(\Leftrightarrow-1=\dfrac{1}{a^2b^2c^2}\)(vô nghiệm)
Vậy ...
Ta có:
\(\dfrac{bc}{a}+\dfrac{ac}{b}=c\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge2c\)
Chứng minh tương tự, ta có:
\(\dfrac{bc}{a}+\dfrac{ab}{c}\ge2b\)
\(\dfrac{ac}{b}+\dfrac{ab}{c}\ge2a\)
\(\Rightarrow2\left(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\)
Dấu = xảy ra khi a = b = c