K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

mình nghĩ đề thế này, do bạn ko viết a+1,b+1,c+1 dưới mẫu

Cho abc = 1 . CMR : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\)

                                             GIẢI

Ta có : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{abc}{a^2bc+abc+ab}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)

\(=\frac{ab+a+1}{ab+a+1}=1\)

16 tháng 2 2019

Em kiểm tra lại đề bài nhé !

NV
16 tháng 2 2019

Chắc bạn viết nhầm đề, cho \(a=b=c=1\) đâu có đúng

Sửa lại đề: cho \(abc=1\) chứng minh \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\)

Ta có

\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{c}{ac+c+abc}\)

\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{c}{c\left(a+1+ab\right)}\)

\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{ab+a+1}+\dfrac{1}{ab+a+1}\)

\(=\dfrac{a+ab+1}{ab+a+1}=1\) (đpcm)

16 tháng 2 2019

Hỏi đáp Toán

Đề bạn Lâm đúng đấy!

18 tháng 12 2018

ac+c+1

16 tháng 2 2019

\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac}{abc+ac+1}+\dfrac{ab}{abc+ab+1}+\dfrac{bc}{abc+bc+1}\)

\(=\dfrac{ac}{ac+2}+\dfrac{ab}{ab+2}+\dfrac{bc}{bc+2}\)

\(=abc\left(\dfrac{b}{abc+2}+\dfrac{c}{abc+2}+\dfrac{a}{abc+2}\right)\)

\(=1.1=1\)(đpcm).

Vậy \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\).

18 tháng 1 2019

Ta có:

\(\dfrac{1}{a^2+bc}\le\dfrac{1}{2\sqrt{a^2bc}}=\dfrac{1}{2a\sqrt{bc}}=\dfrac{\sqrt{bc}}{2abc}\)

Tương tự:

\(\Rightarrow VT\le\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\dfrac{a+b+c}{2abc}\)

Dấu "=" khi a=b=c

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Lời giải:

Vì $a+b+c=1$ nên:

\(a^2+b^2+abc-1=(a+b)^2-2ab+abc-1\)

\(=(a+b)^2-1+ab(c-2)=(1-c)^2-1+ab(c-2)\)

\(=-c(2-c)+ab(c-2)=c(c-2)+ab(c-2)=(c+ab)(c-2)\)

Do đó:

\(\frac{c+ab}{a^2+b^2+abc-1}=\frac{c+ab}{(c+ab)(c-2)}=\frac{1}{c-2}\)

Hoàn toàn tương tự với các phân thức còn lại, suy ra:

\(\frac{c+ab}{a^2+b^2+abc-1}+\frac{a+bc}{b^2+c^2+abc-1}+\frac{b+ac}{a^2+c^2+abc-1}=\frac{1}{c-2}+\frac{1}{a-2}+\frac{1}{b-2}=\frac{(a-2)(b-2)+(b-2)(c-2)+(c-2)(a-2)}{(a-2)(b-2)(c-2)}\)

\(=\frac{ab+bc+ac-4(a+b+c)+12}{(a-2)(b-2)(c-2)}=\frac{ab+bc+ac+8}{(a-2)(b-2)(c-2)}\)

Ta có đpcm.

22 tháng 11 2018

Akai Haruma