Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ đề thế này, do bạn ko viết a+1,b+1,c+1 dưới mẫu
Cho abc = 1 . CMR : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\)
GIẢI
Ta có : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{abc}{a^2bc+abc+ab}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)
\(=\frac{ab+a+1}{ab+a+1}=1\)
\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{ac}{abc+ac+1}+\dfrac{ab}{abc+ab+1}+\dfrac{bc}{abc+bc+1}\)
\(=\dfrac{ac}{ac+2}+\dfrac{ab}{ab+2}+\dfrac{bc}{bc+2}\)
\(=abc\left(\dfrac{b}{abc+2}+\dfrac{c}{abc+2}+\dfrac{a}{abc+2}\right)\)
\(=1.1=1\)(đpcm).
Vậy \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\).
Lời giải:
Vì $a+b+c=1$ nên:
\(a^2+b^2+abc-1=(a+b)^2-2ab+abc-1\)
\(=(a+b)^2-1+ab(c-2)=(1-c)^2-1+ab(c-2)\)
\(=-c(2-c)+ab(c-2)=c(c-2)+ab(c-2)=(c+ab)(c-2)\)
Do đó:
\(\frac{c+ab}{a^2+b^2+abc-1}=\frac{c+ab}{(c+ab)(c-2)}=\frac{1}{c-2}\)
Hoàn toàn tương tự với các phân thức còn lại, suy ra:
\(\frac{c+ab}{a^2+b^2+abc-1}+\frac{a+bc}{b^2+c^2+abc-1}+\frac{b+ac}{a^2+c^2+abc-1}=\frac{1}{c-2}+\frac{1}{a-2}+\frac{1}{b-2}=\frac{(a-2)(b-2)+(b-2)(c-2)+(c-2)(a-2)}{(a-2)(b-2)(c-2)}\)
\(=\frac{ab+bc+ac-4(a+b+c)+12}{(a-2)(b-2)(c-2)}=\frac{ab+bc+ac+8}{(a-2)(b-2)(c-2)}\)
Ta có đpcm.
Chắc bạn viết nhầm đề, cho \(a=b=c=1\) đâu có đúng
Sửa lại đề: cho \(abc=1\) chứng minh \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\)
Ta có
\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{c}{ac+c+abc}\)
\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{c}{c\left(a+1+ab\right)}\)
\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{ab+a+1}+\dfrac{1}{ab+a+1}\)
\(=\dfrac{a+ab+1}{ab+a+1}=1\) (đpcm)
Đề bạn Lâm đúng đấy!