K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
28 tháng 2 2024

\(A=3+3^2+3^3+...+3^{199}+3^{200}\\ \Rightarrow3A=3^2+3^3+3^4+....+3^{200}+3^{201}\\ \Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{200}+3^{201}\right)-\left(3+3^2+3^3+...+3^{199}+3^{200}\right)\\ \Rightarrow2A=3^{201}-3\\ \Rightarrow2A+3=3^{201}\)( Là một lũy thừa của 3 ) => DPCM

28 tháng 2 2024

cảm ơn

30 tháng 9 2016

A=1+2+22+23+...+2200

2A=2+22+23+24+...+2201

2A-A=(2+22+23+24+...+2201) - (1+2+22+23+...+2200)

A=2201-1

=>A+1=2201

B=3+32+33+...+32005

3B=32+33+34+...+32006

3B-B=(32+33+34+...+32006) - (3+32+33+...+32005)

2B=32006-3

2B+3=32006 là lũy thừa của 3 (đpcm)

30 tháng 9 2016

A = 1 + 2 + 22 + 23 + ... + 2200

2A = 2 + 22  + 23 + 24 + ... + 2201

2A - A = ( 2 + 22 + 23 + 24 + ... + 2201 ) - ( 1 + 2 + 22 + 23 + ... + 2200 )

A = 2201 - 1

1 tháng 7 2017

a)\(A=3+3^2+3^3+...+3^{100}\)

=>\(3A=3^2+3^3+3^4+...+3^{101}\)

=>\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

=>\(2A=3^{101}-3\)

=>2A+3=3101

b)3n=3101 => n=101

4 tháng 12 2015

d) Ta có A chia hết cho 3 

=> 2A chia hết cho 3 mà 3 cũng chia hết cho 3

=> 2A+3 chia hết cho A

9 tháng 12 2019

Bài 2

A = 1 + 2 + 2+ 23 + ... + 2200

2A = 2 + 22 + 2+ 24 + ... + 2201

2A - A = (2 + 22 + 2+ 24 + ... + 2201) - (1 + 2 + 2+ 23 + ... + 2200)

A = 2201 - 1

=> A + 1 = 2201 - 1 + 1

=> A + 1 = 2201

Bài 3

B = 3 + 3+ 33 + ... + 32005

3B = 32 + 33 + 34 + ... + 32006

3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 3+ 33 + ... + 32005)

2B = 32006 - 3

=> 2B + 3 = 32006 - 3 + 3

=> 2B + 3 = 32006

20 tháng 12 2021

b: \(A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{58}\right)⋮13\)

20 tháng 12 2021

\(a,\Leftrightarrow2A=8+2^3+2^4+...+2^{21}\\ \Leftrightarrow2A-A=8+2^3+2^4+...+2^{21}-4-2^2-2^3-...-2^{20}\\ \Leftrightarrow A=2^{21}+8-4-2^2=2^{21}\left(đpcm\right)\\ b,A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+3^4+...+3^{58}\right)\\ A=13\left(3+3^4+...+3^{58}\right)⋮13\)

15 tháng 10 2018

\(3A=3^2+3^3+3^4+...+3^{1011}\)

\(2A=3A-A=3^{1011}-3\Rightarrow2A+3=3^{1011}=\left(3^3\right)^{337}=27^{337}\)

19 tháng 8 2017

a) 3.32.33.....3100=31+2+...+100

b)x.x3.x5.....x49=x1+3+5+...+49

17 tháng 12 2017

a)

\(A=3+3^2+3^3+3^4+...+3^{120}\)

\(\Rightarrow3A=3.\left(3+3^2+3^3+3^4+...+3^{120}\right)\)

\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{121}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{121}\right)-\left(3+3^2+3^3+3^4+...+3^{120}\right)\)

\(\Rightarrow2A=3^{121}-3\)

\(\Rightarrow A=\frac{3^{121}-3}{2}\)

b)

\(2A+3\)

\(=3^{121}-3+3\)

\(=3^{121}\)

Mà 3121 là lũy thừa của 3

\(\Rightarrow\) 2A + 3 là lũy thừa của 3.