K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2023

A = \(\dfrac{4}{2.5}\) + \(\dfrac{4}{5.8}\)+...+ \(\dfrac{4}{47.50}\)

A = \(\dfrac{4}{3}\).( \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{47.50}\))

A = \(\dfrac{4}{3}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{8}\)+...+ \(\dfrac{1}{47}\) - \(\dfrac{1}{50}\))

A = \(\dfrac{4}{3}\).( \(\dfrac{1}{2}\) - \(\dfrac{1}{50}\)

A = \(\dfrac{4}{3}\)\(\dfrac{24}{50}\)

A = \(\dfrac{16}{25}\)

DD
25 tháng 8 2021

\(A=\frac{5}{2.5}+\frac{5}{5.8}+\frac{5}{8.11}+...+\frac{5}{47.50}\)

\(=\frac{5}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{47.50}\right)\)

\(=\frac{5}{3}\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{50-47}{47.50}\right)\)

\(=\frac{5}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{47}-\frac{1}{50}\right)\)

\(=\frac{5}{3}\left(\frac{1}{2}-\frac{1}{50}\right)\)

\(=\frac{4}{5}\)

Q=(-1)+(-3)+(-5)+...+(-99)

 Dãy số trên là dãy số cách đều -4 đơn vị và có 51 số hạng.

\(\Rightarrow\) Q = [ -99 + ( -1) . 51 : 2 = -2550

Vậy Q= -2500

S= \(\dfrac{1}{2.5}\) + \(\dfrac{1}{5.8}\) + \(\dfrac{1}{8.10}\) + ... + \(\dfrac{1}{47.50}\) 

S=  \(\dfrac{1}{3}\) . ( \(\dfrac{3}{2.5}\) + \(\dfrac{3}{5.8}\) + ... + \(\dfrac{3}{47.50}\) )

S=  \(\dfrac{1}{3}\) . ( \(\dfrac{1}{2}\) - \(\dfrac{1}{50}\) )

S = \(\dfrac{1}{3}\) . \(\dfrac{12}{25}\)

S= \(\dfrac{4}{25}\)

Vậy S = \(\dfrac{4}{25}\)

30 tháng 3 2018

a) \(\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+.......+\frac{6}{44.47}+\frac{6}{47.50}\)

\(=2\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+......+\frac{3}{44.47}+\frac{3}{47.50}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{44}-\frac{1}{47}+\frac{1}{47}-\frac{1}{50}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{50}\right)\)

\(=1-\frac{1}{25}\)

\(=\frac{24}{25}\)

30 tháng 3 2018

đặt \(A=\frac{1}{9.11}+\frac{1}{11.13}+........+\frac{1}{41.43}+\frac{1}{43.45}\)

\(2A=\frac{2}{9.11}+\frac{2}{11.13}+.......+\frac{2}{41.43}+\frac{2}{43.45}\)

\(2A=\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+......+\frac{1}{41}-\frac{1}{43}+\frac{1}{43}-\frac{1}{45}\)

\(2A=\frac{1}{9}-\frac{1}{45}\)

\(2A=\frac{4}{45}\)

\(A=\frac{4}{45}\div2\)

\(A=\frac{2}{45}\)

9 tháng 3 2016

Ta có: 3S = 3/2.5 + 3/5.8 + ... + 3/47.50

           3S = 1/2 - 1/5 + 1/5 - 1/8 + ... +1/47 - 1/50

           3S = 1/2 - 1/50

           3S = 12/25

           => S = 12/25 : 3 = 4/25 

9 tháng 3 2016

k, đây là dạng toán sai phân hữu hạn. 
----------- 
số hạng tổng quát là 1/[n.(n+3)] = (1/3).[(n+3)-n]/[n.(n+3)] = (1/3). [1/n - 1/(n+3)] 
=> 
A = (1/3).[(1/2 - 1/5) + (1/5 - 1/8) + (1/8 - 1/11) +...+(1/44 - 1/47) + (1/47 - 1/50)] 
= (1/3).[1/2 - 1/50] 
= (1/3). (24/50) = (1/3).(12/25) = 4/25 
vậy A = 4/25 
--------- 
good luck!

8 tháng 1 2018

\(A=\dfrac{4}{2\cdot5}+\dfrac{4}{5\cdot8}+\dfrac{4}{8\cdot11}+...+\dfrac{4}{65\cdot68}\\ =\dfrac{4}{3}\cdot\dfrac{3}{2\cdot5}+\dfrac{4}{3}\cdot\dfrac{3}{5\cdot8}+\dfrac{4}{3}\cdot\dfrac{3}{8\cdot11}+...+\dfrac{4}{3}\cdot\dfrac{3}{65\cdot68}\\ =\dfrac{4}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{65\cdot68}\right)\\ =\dfrac{4}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\\ =\dfrac{4}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{68}\right)\\ =\dfrac{4}{3}\cdot\dfrac{33}{68}\\ =\dfrac{11}{17}\)

19 tháng 3 2018

\(=\frac{3}{4}\cdot\left(\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{62.65}\right)\)

\(=\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{62.65}\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{62}-\frac{1}{65}\)

\(=\frac{1}{2}-\frac{1}{65}\)

\(=\frac{63}{130}\)

19 tháng 3 2018

Đặt A=4/2.5+4/5.8+4/8.11+...+4/62.65.Ta có A=4.(1/2.5+1/5.8+1/8.11+...1/62.65)=4/3.(3/2.5+3/5.8+3/8.11+...+3/62.65)                                         =4/3.(1/2-1/5+1/5-1/8+1/8-1/11+...+3/62-3/65)=4/3.(1/2-1/65)=4/3.63/130=42/56                                                                                            Vậy A=42/56

25 tháng 8 2023

Sửa đề:

\(A=\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)

\(A=4.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)

\(A=4.\left(\dfrac{1}{2}-\dfrac{1}{68}\right)\)

\(A=4.\left(\dfrac{34}{68}-\dfrac{1}{68}\right)\)

\(A=4.\dfrac{33}{68}\)

\(A=\dfrac{33}{17}\)

25 tháng 8 2023

A = \(\dfrac{4}{2.5}\) + \(\dfrac{4}{5.8}\)\(\dfrac{4}{8.11}\)+...+ \(\dfrac{4}{65.68}\)

A = \(\dfrac{4}{3}\).( \(\dfrac{3}{2.5}\) + \(\dfrac{3}{5.8}\)\(\dfrac{3}{8.11}\)+....+ \(\dfrac{3}{65.68}\))

A = \(\dfrac{4}{3}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{11}\)+...+ \(\dfrac{1}{65}\)\(\dfrac{1}{68}\)

A = \(\dfrac{4}{3}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{68}\))

A = \(\dfrac{4}{3}\)\(\dfrac{33}{68}\)

A = \(\dfrac{11}{17}\)