K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2018

a) \(\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+.......+\frac{6}{44.47}+\frac{6}{47.50}\)

\(=2\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+......+\frac{3}{44.47}+\frac{3}{47.50}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{44}-\frac{1}{47}+\frac{1}{47}-\frac{1}{50}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{50}\right)\)

\(=1-\frac{1}{25}\)

\(=\frac{24}{25}\)

30 tháng 3 2018

đặt \(A=\frac{1}{9.11}+\frac{1}{11.13}+........+\frac{1}{41.43}+\frac{1}{43.45}\)

\(2A=\frac{2}{9.11}+\frac{2}{11.13}+.......+\frac{2}{41.43}+\frac{2}{43.45}\)

\(2A=\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+......+\frac{1}{41}-\frac{1}{43}+\frac{1}{43}-\frac{1}{45}\)

\(2A=\frac{1}{9}-\frac{1}{45}\)

\(2A=\frac{4}{45}\)

\(A=\frac{4}{45}\div2\)

\(A=\frac{2}{45}\)

22 tháng 8 2016

=> 3B = 3.( 1/2.5 + 1/5.8 + 1/8.11 + ........... + 1/122.125)

           = 3/2.5 + 3/5.8 + 3/ 8.11 + ......+ 3/122.125

Ta có: 3/ 2.5 = 1/2 - 1/5 

          3/5.8  = 1/5 -1/8

          3/ 8.11 = 1/8 -1/11

          ..........................

         3/122 . 125 = 3/122 - 3/125

=> 3B=  1/2 - 15/5 + 1/5 -1/8 +1/8 - 1/11 +........+1/122 - 1/125

         =  1/2 - 1/125 = 125/250 - 2/250= 123/250

=> B= 3B : 3 = 123/250 :3 = 123/250 . 1/3 = 41/250

22 tháng 8 2016

=> 2C = 2.(1/9.11 + 1/11.13 +....+ 1/97 .99)

           = 2/9.11 + 2/11 .13 +.....+ 2/ 97.99

Ta có: 2/9.11 = 1/9 - 1/11

          2/11.13 = 2/11 -2/ 13

         ...............................

         2/97.99 = 1/97 - 1/99

=> 2B = 1/9 - 1/11 + 1/11 - 1/13 + ....+ 1/97 - 1/99

           = 1/9 -1/99 = 11/99 - 1/99 =10/99

=> B= 2B : B = 10/99 :2 =10/99 . 1/2 = 5/99

Vậy B = 5/99

26 tháng 7 2017

\(S=\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...+\frac{6}{29.32}\)

\(S=2.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\right)\)

\(S=2.\left(\frac{1}{2}-\frac{1}{32}\right)\)

\(S=2.\frac{15}{31}\Rightarrow S=\frac{15}{16}< 1\)

25 tháng 6 2020

\(S=\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...+\frac{6}{29.32}\)  

\(S=\left(\frac{1}{2}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{11}\right)+...+\left(\frac{1}{29}-\frac{1}{32}\right)\)

\(S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\)

\(S=\frac{1}{2}-\frac{1}{32}\)

\(S=\frac{17}{32}< 1\)

18 tháng 4 2019

\(S=2.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)

\(S=2.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)

\(S=2.\left(\frac{1}{2}-\frac{1}{32}\right)\)

\(S=1-\frac{1}{16}< 1\)

Vậy \(S< 1\)

31 tháng 1 2019

\(S=\frac{6}{2.5}+\frac{6}{5.8}+.......+\frac{6}{29.32}\)

\(S=2\left(\frac{3}{2.5}+\frac{3}{5.8}+......+\frac{3}{29.32}\right)\)

\(S=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+......+\frac{1}{29}-\frac{1}{32}\right)\)

\(S=2\left(\frac{1}{2}-\frac{1}{32}\right)\)

\(S=2.\frac{15}{32}\)

\(S=\frac{15}{16}< 1\RightarrowĐPCM\)

Vậy \(S=\frac{15}{16}\)

24 tháng 4 2018

Bài 1 :

S = \(\frac{6}{2.5}+\frac{6}{5.8}+...+\frac{6}{29.32}\)

   = 2 . \(\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)

   = 2 . \(\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)

   = 2 . \(\left(\frac{1}{2}-\frac{1}{32}\right)\)= ....

22 tháng 4 2017

cả 2 cái cộng lại hay là từng cái một vậy bạn?

a) Ý bạn là: \(S_1=\frac{3}{4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}\)đúng không?

\(S_1=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)

\(S_1=1-\frac{1}{43}< 1\left(đpcm\right)\)

b) \(S_2=\frac{6}{2\cdot5}+\frac{6}{5.8}+\frac{6}{8\cdot11}+...+\frac{6}{29\cdot32}\)

=>\(\frac{S_2}{2}=\frac{3}{2\cdot5}+\frac{3}{5.8}+\frac{3}{8\cdot11}+...+\frac{3}{29\cdot32}\)

\(\frac{S_2}{2}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\)

\(\frac{S_2}{2}=\frac{1}{2}-\frac{1}{32}=\frac{16}{32}-\frac{1}{32}=\frac{15}{32}\)

=>\(S_2=\frac{15}{32}\cdot2=\frac{15}{16}< 1\left(đpcm\right)\)

9 tháng 3 2016

Ta có: 3S = 3/2.5 + 3/5.8 + ... + 3/47.50

           3S = 1/2 - 1/5 + 1/5 - 1/8 + ... +1/47 - 1/50

           3S = 1/2 - 1/50

           3S = 12/25

           => S = 12/25 : 3 = 4/25 

9 tháng 3 2016

k, đây là dạng toán sai phân hữu hạn. 
----------- 
số hạng tổng quát là 1/[n.(n+3)] = (1/3).[(n+3)-n]/[n.(n+3)] = (1/3). [1/n - 1/(n+3)] 
=> 
A = (1/3).[(1/2 - 1/5) + (1/5 - 1/8) + (1/8 - 1/11) +...+(1/44 - 1/47) + (1/47 - 1/50)] 
= (1/3).[1/2 - 1/50] 
= (1/3). (24/50) = (1/3).(12/25) = 4/25 
vậy A = 4/25 
--------- 
good luck!

DD
25 tháng 8 2021

\(A=\frac{5}{2.5}+\frac{5}{5.8}+\frac{5}{8.11}+...+\frac{5}{47.50}\)

\(=\frac{5}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{47.50}\right)\)

\(=\frac{5}{3}\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{50-47}{47.50}\right)\)

\(=\frac{5}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{47}-\frac{1}{50}\right)\)

\(=\frac{5}{3}\left(\frac{1}{2}-\frac{1}{50}\right)\)

\(=\frac{4}{5}\)