K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh

10 tháng 3 2016

= 0 nhé bn 

15 tháng 12 2019

1. Ta có: x2 \(\ge\)0 => x2 + 2 \(\ge\)\(\forall\)x => (x2 + 2)2 \(\ge\)\(\forall\)

          3|x - y + 1| \(\ge\)\(\forall\)x;y

=> 2021 - (x2 + 2)2 - 3|x - y + 1| \(\le\)2021 - 4 = 2017

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x^2+2\right)^2=4\\x-y+1=0\end{cases}}\) <=> \(\hept{\begin{cases}\left(x^2+2-2\right)\left(x^2+2+2\right)=0\\y=x+1\end{cases}}\) <=> \(\hept{\begin{cases}x=0\\y=1\end{cases}}\)

Vậy Max A = 2017 <=> x = 0 và y = 1

15 tháng 12 2019

2. Ta có: \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

=> \(\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

=> \(\frac{y+z-x+2x}{x}=\frac{z+x-y+2y}{y}=\frac{z+y-z+2z}{z}\)

=> \(\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

=> \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\) => x = y = z

Khi đó, ta được : A =  \(\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)

13 tháng 3 2016

Th1:x2-2x=0(*)

<=>x*x-2x=0

=>x(x-2)=0

trường hợp này lại chia ra 2 Th nhỏ

TH1:x=0;

TH2:x-2=0

=>x=2

Th2:|3x-7|=0

=>3x-7=±0

=>3x=7

=>x=\(\frac{7}{3}\)

ủng hộ nhá ^^