Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn ơi đây là bài cuối trong 1 đề thi HSG thầy phát cho mk
1/a + 1/b = 1/a+b+c - 1/c
<=> a+b/ab = a+b/(-c(a+b+c))
<=> ab = -c(a+b+c)
<=> ab +bc = -c(a+c)
<=> b(a+c) = -c(a+c)
<=> b = -c
ta được M = 0
mà bạn phải chứng minh 3 lần như thế này. lần 2 bn lấy 1/b chuyển qua vế phải. Lần 3 chuyển 1/a qua vế phải. Làm thế mới đủ điểm. Kết luận M luôn = 0 với ....
Mình ko biết ghi phân số. Bn thông cảm ^^
\(\frac{b}{a+b}=\frac{c}{b+c}=\frac{a}{a+c}\Rightarrow\frac{a+b}{b}=\frac{b+c}{c}=\frac{a+c}{a}\)
\(\Leftrightarrow\frac{a}{b}+1=\frac{b}{c}+1=\frac{c}{a}+1\)mà\(a,b,c>0\Rightarrow a+b+c\ne0\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
\(\Rightarrow M=\frac{ab+bc+ac}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)