Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: a+b+c khác 0
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào B ta có:
\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)
TH2: a+b+c=0
=> c=-a-b
=>a=-b-c
=>b=-a-c
thay a,b,c vào B ta có:
\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)
\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)
p/s: th2 ko chắc nhá
Nhầm đề câu A rùi bn ơi
Hội con 🐄 chúc bạn học tốt!!!
Mình nhầm xíu :
Tính giá trị của biểu thức :
P = x2015 + y2015 + z2015
Ta có : x3 + y3 = z(3xy - z2)
=> x3 + y3 = 3xyz - z3
=> x3 + y3 + z3 - 3xyz = 0
=> (x + y)(x2 - xy + y2) + z3 - 3xyz = 0
=> (x + y)3 - 3xy(x + y) + z3 - 3xyz = 0
=> [(x + y)3 + z3] - 3xy(x + y) - 3xyz = 0
=> (x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0
=> (x + y +z)(x2 + y 2 + 2xy - xz - yz + z2) - 3xy(x + y + z) = 0
=> (x + y + z)(x2 + y2 + z2 - xy - yz - zx) = 0
=> x2 + y2 + z2 - xy - yz - zx = 0 (Vì x + y + z = 3)
=> 2(x2 + y2 + z2 - xy - yz - zx) = 0
=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx = 0
=> (x2 - 2xy + y2) + (y2 - 2yz + z2) + (x2 - 2zx + z2) = 0
=> (x - y)2 + (y - z)2 + (x - z)2 = 0
=> \(\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}}\Rightarrow x=y=z\)
mà x + y + z = 3
=> x = y = z = 1
Khi đó A = 673(x2019 + y2019 + z2019) + 1
= 673(12019 + 12019 + 12019) + 1
= 673.3 + 1 = 2020
Vậy A = 2020
1. Ta có: x2 \(\ge\)0 => x2 + 2 \(\ge\)2 \(\forall\)x => (x2 + 2)2 \(\ge\)4 \(\forall\)x
3|x - y + 1| \(\ge\)0 \(\forall\)x;y
=> 2021 - (x2 + 2)2 - 3|x - y + 1| \(\le\)2021 - 4 = 2017
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x^2+2\right)^2=4\\x-y+1=0\end{cases}}\) <=> \(\hept{\begin{cases}\left(x^2+2-2\right)\left(x^2+2+2\right)=0\\y=x+1\end{cases}}\) <=> \(\hept{\begin{cases}x=0\\y=1\end{cases}}\)
Vậy Max A = 2017 <=> x = 0 và y = 1
2. Ta có: \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
=> \(\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
=> \(\frac{y+z-x+2x}{x}=\frac{z+x-y+2y}{y}=\frac{z+y-z+2z}{z}\)
=> \(\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
=> \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\) => x = y = z
Khi đó, ta được : A = \(\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)