Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dấu hiệu là điểm bài thi học kì của 100 học sinh lớp 7 của một trường Trung học Cơ Sở Hòa Bình. Số các dấu hiệu là 100
b) Bảng tần số
Giá trị (x) | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
Tần số (n) | 2 | 1 | 2 | 4 | 6 | 8 | 9 | 10 | 13 | 11 | 8 | 8 | 4 | 6 | 3 | 2 | 3 | 1 | N=100 |
Nhận xét: Giá trị lớn nhất là 19, giá trị nhỏ nhất là 1; tần số lớn nhất là 13, tần số nhỏ nhất là 1.
A = 7 - 8 + 9 -10 + 11 - 12 +...+ 2009 - 2010
A = (7-8) + (9 - 10) + ( 11 - 12) +...+ ( 2009 - 2010)
Xét dãy số: 7; 9; 11;...; 2009
Dãy số trên là dãy số cách đều với khoảng cách là: 9 - 7 = 2
Dãy số trên có số số hạng là: (2009 - 7) : 2 + 1 = 1002
Vậy tổng A có 1002 nhóm mỗi nhóm có giá trị là: 7 - 8 = -1
A = -1 \(\times\) 1002 = - 1002
B = 1 - 2 - 3 - 4 -...- 2022 - 2023
B = 1 - ( 2 + 3 + 4 +...+ 2022 + 2023)
B = 1 - (2 + 2023).{ ( 2023 - 2): 1 + 1}: 2 = -2047274
Ta có:A=\(\dfrac{-21}{10^{2016}}\)+\(\dfrac{-12}{10^{2017}}\)
= \(\dfrac{-12}{10^{2016}}\)+\(\dfrac{-9}{10^{2016}}\)+\(\dfrac{-12}{10^{2017}}\).
B=\(\dfrac{-12}{10^{2016}}\)+\(\dfrac{-21}{10^{2017}}\)
=\(\dfrac{-12}{10^{2016}}\)+\(\dfrac{-9}{10^{2017}}\)+ \(\dfrac{-12}{10^{2017}}\)
Khi đó để so sánh A và B ta chỉ cần so sánh:\(\dfrac{-9}{10^{2016}}\)và \(\dfrac{-9}{10^{2017}}\)vì A và B cùng có:
\(\dfrac{-12}{10^{2016}}\)+\(\dfrac{-12}{10^{2017}}\).
Do:\(\dfrac{9}{10^{2016}}\)>\(\dfrac{9}{10^{2017}}\).
Suy ra:\(\dfrac{-9}{10^{2016}}\)<\(\dfrac{-9}{10^{2017}}\).
Từ đó ta suy ra được: A< B
bn nhìn kĩ trên là hiểu thôi, cụ thể:
\(\dfrac{9}{10^{2016}}\)>\(\dfrac{9}{10^{2017}}\).Nên số đối của chúng sẽ là dấu ngược lại.
\(\dfrac{-9}{10^{2016}}\)<\(\dfrac{-9}{10^{2017}}\)
Bn suy nghĩ kĩ thì được thôi, nếu chắc ăn hơn thì bn cứ VD đi
\(1)\)\(-\dfrac{10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
\(=\dfrac{10}{11}\left(-\dfrac{8}{9}+\dfrac{7}{18}\right)\)
\(=\dfrac{10}{11}\left(\dfrac{-16}{18}+\dfrac{7}{18}\right)\)
\(=\dfrac{10}{11}.\left(-\dfrac{1}{2}\right)=-\dfrac{5}{11}\)
\(2)\)\(\dfrac{12}{25}.\dfrac{23}{7}-\dfrac{12}{7}.\dfrac{13}{25}\)
\(=\dfrac{12}{7}.\dfrac{23}{25}-\dfrac{12}{7}.\dfrac{13}{25}\)
\(=\dfrac{12}{7}.\left(\dfrac{23}{25}-\dfrac{13}{25}\right)\)
\(=\dfrac{12}{7}.\dfrac{2}{5}=\dfrac{24}{35}\)
\(3)\)\(\dfrac{3}{7}.\dfrac{16}{15}-\dfrac{2}{15}.\dfrac{-3}{7}\)
\(=\dfrac{3}{7}.\dfrac{16}{15}-\dfrac{3}{7}.\dfrac{-2}{15}\)
\(=\dfrac{3}{7}.\left(\dfrac{16}{15}+\dfrac{2}{15}\right)\)
\(=\dfrac{3}{7}.\dfrac{18}{15}=\dfrac{18}{35}\)
\(4)\)\(-\dfrac{4}{13}.\dfrac{5}{17}+\dfrac{-12}{13}.\dfrac{4}{17}\)
\(=-\dfrac{4}{13}.\dfrac{5}{17}+\dfrac{-4}{13}.\dfrac{12}{17}\)
\(=-\dfrac{4}{13}.\left(\dfrac{5}{17}+\dfrac{12}{17}\right)\)
\(=-\dfrac{4}{13}.\dfrac{17}{17}=-\dfrac{4}{13}\)
`#040911`
`1)`
`-10/11 * 8/9 + 7/18 . 10/11`
`= 10/11 * (-8/9 + 7/18)`
`= 10/11 * (-1/2)`
`= -5/11`
`2)`
`12/25 * 23/7 - 12/7 *13/25`
`= 12/7 * 23/25 - 12/7 * 13/25`
`= 12/7 * (23/25 - 13/25)`
`= 12/7 * 2/5`
`= 24/35`
`3)`
`3/7 * 16/15 - 2/15 * (-3)/7`
`= 3/7 * (16/15 + 2/15)`
`= 3/7 * 6/5`
`= 18/35`
`4)`
`-4/13 * 5/17 + (-12)/13 * 4/17`
`= -4/17 * 5/13 + (-12)/13 * 4/17`
`= 4/17 * (-5/13 - 12/13)`
`= 4/17 * (-17)/13`
`= -4/13`
Bài1:
a)Ta có:
\(-203< 0;\dfrac{1}{2017}>0\)
Nên \(-203< \dfrac{1}{2017}\)
b)\(\dfrac{7}{29}và\dfrac{12}{47}\)
c)Đặt \(A=\dfrac{10^{11}+1}{10^{12}+1}\);\(B=\dfrac{10^{12}+1}{10^{13}+1}\)
Ta có:\(10A=\dfrac{10^{12}+1+9}{10^{12}+1}=1+\dfrac{9}{10^{12}+1}\)
\(10B=\dfrac{10^{13}+1+9}{10^{13}+1}=1+\dfrac{9}{10^{13}+1}\)
Do đó:\(10A>10B\Rightarrow A>B\)
Bài2:
a)\(500>2^x>100\)
Ta có:\(100< 2^7< 2^8< 500\)
\(\Rightarrow x\in\left\{7;8\right\}\)
Vậy...
Câu sau tương tự
a) Ta có: \(-203< 0;\dfrac{1}{2017}>0\)
\(\Rightarrow\dfrac{1}{2017}>-203\)
a) Ta có: \(\dfrac{-5}{7}\left(\dfrac{14}{5}-\dfrac{7}{10}\right):\left|-\dfrac{2}{3}\right|-\dfrac{3}{4}\left(\dfrac{8}{9}+\dfrac{16}{3}\right)+\dfrac{10}{3}\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)
\(=\dfrac{-5}{7}\cdot\dfrac{3}{2}\cdot\dfrac{21}{10}-\dfrac{3}{4}\cdot\dfrac{56}{3}+\dfrac{10}{3}\cdot\dfrac{8}{15}\)
\(=\dfrac{-9}{4}-14+\dfrac{16}{9}\)
\(=\dfrac{-1621}{126}\)
b) Ta có: \(\dfrac{17}{-26}\cdot\left(\dfrac{1}{6}-\dfrac{5}{3}\right):\dfrac{17}{13}-\dfrac{20}{3}\left(\dfrac{2}{5}-\dfrac{1}{4}\right)+\dfrac{2}{3}\left(\dfrac{6}{5}-\dfrac{9}{2}\right)\)
\(=\dfrac{-17}{26}\cdot\dfrac{13}{17}\cdot\dfrac{-3}{2}-\dfrac{20}{3}\cdot\dfrac{3}{20}+\dfrac{2}{3}\cdot\dfrac{-33}{10}\)
\(=\dfrac{3}{4}-1-\dfrac{11}{5}\)
\(=-\dfrac{49}{20}\)
Ta có:
\(B=\frac{10}{7.12}+\frac{10}{12.17}+...+\frac{10}{2017.2022}\)
\(\Rightarrow B=2.\left(\frac{5}{7.12}+\frac{5}{12.17}+...+\frac{5}{2017.2022}\right)\)
\(\Rightarrow B=2.\left(\frac{12-7}{7.12}+\frac{17-12}{12.17}+...+\frac{2022-2017}{2017.2022}\right)\)
\(\Rightarrow B=2.\left(\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+...+\frac{1}{2017}-\frac{1}{2022}\right)\)
\(\Rightarrow B=2.\left(\frac{1}{7}-\frac{1}{2022}\right)\)
\(\Rightarrow B=\frac{2015}{7077}\)