Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|4-x\right|+2x=3\)
<=> \(\left|4-x\right|=3-2x\)
<=> \(\orbr{\begin{cases}4-x=3-2x\left(x\le4\right)\\x-4=3-2x\left(x>4\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\left(tm\right)\\3x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\left(ktm\right)\end{cases}}\)
Vậy x = -1
b) \(\left|x-7\right|+2x+5=6\)
<=> \(\left|x-7\right|=1-2x\)
<=> \(\orbr{\begin{cases}x-7=1-2x\left(đk:x\ge7\right)\\x-7=2x-1\left(đk:x< 7\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=8\\x=-6\left(tm\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{8}{3}\left(ktm\right)\\x=-6\left(tm\right)\end{cases}}\)
Vậy x = -6
c) \(3x-\left|2x+1\right|=2\)
<=> \(\left|2x+1\right|=3x-2\)
<=> \(\orbr{\begin{cases}2x+1=3x-2\left(đk:x\ge-\frac{1}{2}\right)\\2x+1=2-3x\left(đk:x< -\frac{1}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\5x=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{5}\left(ktm\right)\end{cases}}\)
Vậy x = 3
d) \(\left|x+2\right|-x=2\)
<=> \(\left|x+2\right|=x+2\)
<=> \(\orbr{\begin{cases}x+2=x+2\left(đk:x\ge-2\right)\\x+2=-x-2\left(x< -2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}0x=0\\2x=-4\end{cases}}\)
<=> 0x = 0 (luôn đúng) và x = -2 (ktm)
Vậy x \(\ge\)-2
e) \(\left|x-3\right|=21\)
<=> \(\orbr{\begin{cases}x-3=21\\3-x=21\end{cases}}\)
<=> \(\orbr{\begin{cases}x=24\\x=-18\end{cases}}\)
Vậy x = 24 hoặc x = -18
f) \(\left|2x+3\right|-\left|x-3\right|=0\)
<=> \(\left|2x+3\right|=\left|x-3\right|\)
<=> \(\orbr{\begin{cases}2x+3=x-3\\2x+3=3-x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\3x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=0\end{cases}}\)
Vậy x thuộc {-6; 0}
g) Ta có: \(\left|x+\frac{1}{8}\right|\ge0\forall x\)
\(\left|x+\frac{2}{8}\right|\ge0\forall x\)
\(\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VT = \(\left|x+\frac{1}{8}\right|+\left|x+\frac{2}{8}\right|+\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VP \(\ge0\) => \(4x\ge0\) => \(x\ge0\)
Do đó: \(x+\frac{1}{8}+x+\frac{2}{8}+x+\frac{5}{8}=4x\)
<=> \(3x+1=4x\) <=> \(x=1\left(tm\right)\)
Vậy x = 1
h) \(\left|x-2\right|-\left|2x+3\right|-x=-2\)
<=> \(\left|x-2\right|-\left|2x+3\right|=x-2\)(*)
Lập bảng xét dấu:
x -3/2 2
x - 2 2 - x | 2 - x 0 x - 2
2x + 3 -2x - 3 0 2x + 3 | 2x + 3
Xét x < -3/2 => pt (*) trở thành: 2 - x + 2x + 3 = x - 2
<=> x + 5 = x - 2 <=> 0x = -7 (vô lí)
Xét -3/2 \(\le\) x < 2 => pt (*) trở thành: 2 - x - 2x - 3 = x - 2
<=> 4x = 1 <=> x = 1/4 ((tm)
Xét x \(\ge\) 2 => pt (*) trở thành x - 2 - 2x - 3 = x - 2
<=> 2x = -3 <=> x = -3/2 (ktm)
Vậy x = 1/4
i) |2x - 3| - x = |2 - x|
<=> |2x - 3| - |2 - x| = x (*)
Lập bảng xét dấu
x 3/2 2
2x - 3 3 - 2x 0 2x - 3 | 2x - 3
2 - x 2 - x | 2 - x 0 x - 2
Xét x < 3/2 => pt (*) trở thành: 3 - 2x - 2 + x = x
<=> 2x = 1 <=> x = 1//2 ((tm)
Xét \(\frac{3}{2}\le x< 2\)=> pt (*) trở thành: 2x - 3 - 2 + x = x
<=> 2x = 5 <=> x = 5/2 (ktm)
Xét x \(\ge\)2 ==> pt (*) trở thành: 2x - 3 - x + 2 = x
<=> 0x = -5 (vô lí)
Vậy x = 1/2
k) 2|x - 3| - |4x - 1| = 0
<=> 2|x - 3| = |4x - 1|
<=> \(\orbr{\begin{cases}2\left(x-3\right)=4x-1\\2\left(x-3\right)=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x-6=4x-1\\2x-6=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-5\\6x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{7}{6}\end{cases}}\) Vậy ...
|\(x-\dfrac{1}{2}\)| + 2\(x\) = 6
|\(x-\dfrac{1}{2}\)| = 6 - 2\(x\); 6 - 2\(x\) > 0 ⇒ 6 > 2\(x\) ⇒ \(x\) < 3
\(\left[{}\begin{matrix}x-\dfrac{1}{2}=6-2x\\x-\dfrac{1}{2}=-6+2x\end{matrix}\right.\)
\(\left[{}\begin{matrix}x+2x=6+\dfrac{1}{2}\\2x-x=6-\dfrac{1}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=\dfrac{13}{2}\\x=\dfrac{11}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{13}{6}\\x=\dfrac{11}{2}\end{matrix}\right.\)
\(x=\dfrac{11}{2}\) > 3 (loại)
Vậy \(x\) = \(\dfrac{13}{6}\)
(5x+2)(x-7)=0
suy ra 5x+2=0 hoặc x-7=0
5x = -2
x = -2/5 hoặc x=7
\(x^2-x-6=0\Rightarrow x^2-2x+3x-6\\ \Rightarrow x\left(x-2\right)+3\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
hay x-2=0 hoặc x+3 = 0
vậy x = 2 hoặc x = -3
a,( X-1/3)^2=0^2=>X-1/3=0=>X=1/3
b,(X-3)^2=1^2=>X-3=1=>X=4
c,(2X-1)^3=(-2)^3=>2X-1=-2=>2X=-2+1=>2X=-1=>X=-1/2
d,(x+1/2)^2=(1/4)^2=(-1/4)^2
TH1:X+1/2=1/4=>X=-1/4
TH2:X+1/2=-1/4=>X=-3/4
a: \(\left(2x+1\right)^2=\left(x-1\right)^2\)
=>2x+1=x-1 hoặc 2x+1=1-x
=>x=-2 hoặc x=0
b: \(\left(x^2-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow x\in\left\{\sqrt{5};-\sqrt{5};-3\right\}\)
c: \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(6x-3-5x-40\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-43\right)=0\)
hay \(x\in\left\{1;43\right\}\)
d: \(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
=>x+1=0
hay x=-1
a) \(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
b) \(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
c) \(\Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Leftrightarrow2x-1=-3\Leftrightarrow x=-1\)
d) \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{\sqrt{6}}{6}\\x+\dfrac{1}{2}=-\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3+\sqrt{6}}{6}\\x=-\dfrac{3+\sqrt{6}}{6}\end{matrix}\right.\)
b: Ta có: \(\left(x-2\right)^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
c: Ta có: \(\left(2x-1\right)^3=-8\)
\(\Leftrightarrow2x-1=-2\)
\(\Leftrightarrow2x=-1\)
hay \(x=-\dfrac{1}{2}\)