Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi \(A,B\in a\)
A',B' lần lượt là hình chiếu của A,B trên (P)
\(d\subset\left(P\right)\) nên \(AB\subset\left(P\right)\)
=>d vuông góc A'A
Do đó: nếu d vuông góc a' thì d vuông góc mp(a,a')
=>d vuông góc a
b: Nếu d vuông góc a thì d vuông góc mp(a,a')
=>d vuông góc a'
Đường thẳng d có vuông góc với mặt phẳng (P)
Vì: \(\left\{ \begin{array}{l}d \bot a\\d \bot b\\a \cap b\end{array} \right. \Rightarrow d \bot \left( P \right)\)
tham khảo
a, Gọi (Q) là mặt phẳng chứa đường thẳng a, b
- Theo tính chất 2 “Có duy nhất 1 đường thẳng đi qua 1 điểm cho trước và vuông góc với một mặt phẳng cho trước”
b, Nếu hai đường thẳng a và b cùng vuông góc với mặt phẳng (P) thì chúng song song với nhau.
a: Nếu a//b và (P) vuông góc a thì (P) cũng vuông góc với b
b: Nếu a và b cùng vuông góc (P) thì chúng sẽ song song với nhau
a) • Ta có: M ∈ b và (P) ∩ (Q) = b;
Suy ra M ∈ (P).
Mà M ∈ (M, a)
Do đó M là giao điểm của (P) và (M, a).
Lại có b’ = (P) ∩ (M, a)
Suy ra đường thẳng b’ đi qua M.
Tương tự ta cũng chứng minh được b’’ đi qua điểm M.
• Ta có: a // (P);
a ⊂ (M, a)
(M, a) ∩ (P) = b’
Do đó a // b’.
Tương tự ta cũng có a // b’’.
Do đó b’ // b’’.
Mặt khác: (P) ∩ (Q) = b;
(M, a) ∩ (P) = b’;
(M, a) ∩ (Q) = b’’;
b // b’’.
Do đó b // b’ // b’’.
Mà cả ba đường thẳng cùng đi qua điểm M nên ba đường thẳng này trùng nhau.
b) Vì a // b’ nên a // b (do b ≡ b’).
tham khảo
Ta có:\(a//\left(P\right)\)
\(a//\left(Q\right)\)
\(\left(P\right)\cap\left(Q\right)=b\)
Do đó theo hệ quả định lí \(2\) ta có \(a//b\).
Qua mỗi điểm M trong không gian, có duy nhất một đường thẳng song song hoặc trùng với đường thẳng ℓ. Đường thẳng đó và mặt phẳng (P) có 1 điểm chung.
Nếu hai mặt phẳng (P) và (Q) có một điểm chung thì chúng có đường thẳng chung d.
Ta có: a // (Q);
a ⊂ (P);
(P) ∩ (Q) = d.
Suy ra a // d.
Tương tự ta cũng có b // d.
Mà a, b, d cùng nằm trong mặt phẳng (P) nên a // b // d, điều này mâu thuẫn với giả thiết a, b cắt nhau trong (P).
Vậy hai mặt phẳng (P) và (Q) không có điểm chung hay (P) // (Q).
a) Mặt phẳng đi qua ba điểm A, B, C đi qua đường thẳng d
b) Có một và chỉ một mặt phẳng đi qua điểm A và đường thẳng d
Trường hợp 1: Đặt rubik sao cho các cạnh bên của rubik song song hoặc trùng với đường thẳng ℓ.
Khi đó hình chiếu của rubik trên mp(P) là hình thoi.
Trường hợp 2: Đặt rubik sao cho các cạnh bên của rubik không song song hoặc trùng với đường thẳng ℓ.
Khi đó hình chiếu của rubik trên mp(P) là hình lục giác.
Hình ảnh của khối rubik qua phép chiếu song song lên mặt phẳng (P) theo phương l là hình hộp ABCD.A’B’C’D’
Mặt phẳng (ABC) chứa điểm A và đường thẳng d.
Do đó mp(ABC) cũng chứa hai đường thẳng AB và BC.
a: d và (P) ko có điểm chung
b: Có 3 khả năng xảy ra:
(d) và (P) có từ 2 điểm chung trở lên nếu d nằm trong (P)
d và (P) có 1 điểm chung nếu d cắt (P)
d và (P) không có điểm chung nếu (d)//(P)