Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi \(A,B\in a\)
A',B' lần lượt là hình chiếu của A,B trên (P)
\(d\subset\left(P\right)\) nên \(AB\subset\left(P\right)\)
=>d vuông góc A'A
Do đó: nếu d vuông góc a' thì d vuông góc mp(a,a')
=>d vuông góc a
b: Nếu d vuông góc a thì d vuông góc mp(a,a')
=>d vuông góc a'
Đường thẳng d có vuông góc với mặt phẳng (P)
Vì: \(\left\{ \begin{array}{l}d \bot a\\d \bot b\\a \cap b\end{array} \right. \Rightarrow d \bot \left( P \right)\)
tham khảo
a, Gọi (Q) là mặt phẳng chứa đường thẳng a, b
- Theo tính chất 2 “Có duy nhất 1 đường thẳng đi qua 1 điểm cho trước và vuông góc với một mặt phẳng cho trước”
b, Nếu hai đường thẳng a và b cùng vuông góc với mặt phẳng (P) thì chúng song song với nhau.
a: Nếu a//b và (P) vuông góc a thì (P) cũng vuông góc với b
b: Nếu a và b cùng vuông góc (P) thì chúng sẽ song song với nhau
Qua mỗi điểm M trong không gian, có duy nhất một đường thẳng song song hoặc trùng với đường thẳng ℓ. Đường thẳng đó và mặt phẳng (P) có 1 điểm chung.
a) • Ta có: M ∈ b và (P) ∩ (Q) = b;
Suy ra M ∈ (P).
Mà M ∈ (M, a)
Do đó M là giao điểm của (P) và (M, a).
Lại có b’ = (P) ∩ (M, a)
Suy ra đường thẳng b’ đi qua M.
Tương tự ta cũng chứng minh được b’’ đi qua điểm M.
• Ta có: a // (P);
a ⊂ (M, a)
(M, a) ∩ (P) = b’
Do đó a // b’.
Tương tự ta cũng có a // b’’.
Do đó b’ // b’’.
Mặt khác: (P) ∩ (Q) = b;
(M, a) ∩ (P) = b’;
(M, a) ∩ (Q) = b’’;
b // b’’.
Do đó b // b’ // b’’.
Mà cả ba đường thẳng cùng đi qua điểm M nên ba đường thẳng này trùng nhau.
b) Vì a // b’ nên a // b (do b ≡ b’).
tham khảo
Ta có:\(a//\left(P\right)\)
\(a//\left(Q\right)\)
\(\left(P\right)\cap\left(Q\right)=b\)
Do đó theo hệ quả định lí \(2\) ta có \(a//b\).
a) Trên đường thẳng \(\Delta \) lấy điểm \(B\) khác \(A\).
Kẻ \(AH \bot \left( P \right),BK \bot \left( P \right)\left( {H,K \in \left( P \right)} \right)\)
\( \Rightarrow ABKH\) là hình chữ nhật \( \Rightarrow AH = BK\)
\( \Rightarrow d\left( {A,\left( P \right)} \right) = d\left( {B,\left( P \right)} \right)\)
Vậy khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( P \right)\) không phụ thuộc vào vị trí của điểm \(A\) trên đường thẳng \(\Delta \).
b) Khoảng cách đó gợi nên khái niệm khoảng cách giữa đường thẳng và mặt phẳng song song.
Đáp án B
Các phát biểu đúng: 1; 4; 5; 6
2. Có một và chỉ một mặt phẳng đi qua 3 điểm phân biệt không thẳng hàng
3. Nếu 1 đường thẳng có 2 điểm phân biệt thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó
7. Trên mỗi mặt phẳng, các kết quả đã biết trong hình học phẳng đều đúng
a) Mặt phẳng đi qua ba điểm A, B, C đi qua đường thẳng d
b) Có một và chỉ một mặt phẳng đi qua điểm A và đường thẳng d
Nếu hai mặt phẳng (P) và (Q) có một điểm chung thì chúng có đường thẳng chung d.
Ta có: a // (Q);
a ⊂ (P);
(P) ∩ (Q) = d.
Suy ra a // d.
Tương tự ta cũng có b // d.
Mà a, b, d cùng nằm trong mặt phẳng (P) nên a // b // d, điều này mâu thuẫn với giả thiết a, b cắt nhau trong (P).
Vậy hai mặt phẳng (P) và (Q) không có điểm chung hay (P) // (Q).
a: d và (P) ko có điểm chung
b: Có 3 khả năng xảy ra:
(d) và (P) có từ 2 điểm chung trở lên nếu d nằm trong (P)
d và (P) có 1 điểm chung nếu d cắt (P)
d và (P) không có điểm chung nếu (d)//(P)