Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo:
a) AA’ vuông góc với mặt phẳng (P)
b) Nếu đường thẳng a vuông góc với mặt phẳng (P) thì hình chiếu của a trên (P) là giao điểm của a với (P).
Đường thẳng d có vuông góc với mặt phẳng (P)
Vì: \(\left\{ \begin{array}{l}d \bot a\\d \bot b\\a \cap b\end{array} \right. \Rightarrow d \bot \left( P \right)\)
tham khảo
a, Gọi (Q) là mặt phẳng chứa đường thẳng a, b
- Theo tính chất 2 “Có duy nhất 1 đường thẳng đi qua 1 điểm cho trước và vuông góc với một mặt phẳng cho trước”
b, Nếu hai đường thẳng a và b cùng vuông góc với mặt phẳng (P) thì chúng song song với nhau.
a: Nếu a//b và (P) vuông góc a thì (P) cũng vuông góc với b
b: Nếu a và b cùng vuông góc (P) thì chúng sẽ song song với nhau
tham khảo:
a) Vì M', N' tương ứng là hình chiếu của M, N trên mặt phẳng (P) nên hình chiếu của a trên mặt phẳng (P) là a’ đường thẳng đi qua hai điểm M', N'.
b) b vuông góc với M'N' và b vuông góc với MM' (do M' là hình chiếu của M trên (P)); M'N' cắt MM' tại M' do đó b vuông góc mặt phẳng tạo bởi M'N', MM' suy ra b có vuông góc với a.
c) b vuông góc với a và b vuông góc với MM' (do M' là hình chiếu của M trên (P)); a cắt MM' tại M do đó b vuông góc mặt phẳng tạo bởi a, MM' suy ra b có vuông góc với M'N'.
a) Mặt phẳng chứa a và a' có vuông góc với (Q)
b) Ta có \(MN \bot \left( Q \right),b \subset \left( Q \right) \Rightarrow MN \bot b\)
\(MN \bot a\) (M là hình chiếu của N trên a)
Vậy MN có vuông góc với cả hai đường thẳng a và b.
c) Vì a // (Q) nên d(a, (Q)) = d(M, (Q)) = MN
a:(P)//(Q)
a vuông góc (P)
=>a vuông góc (Q)
b: Chúng sẽ song song với nhau
Đường thẳng vuông góc với mặt phẳng được hiểu là đường thẳng nằm thẳng đứng so với mặt phẳng.
a: Gọi \(A,B\in a\)
A',B' lần lượt là hình chiếu của A,B trên (P)
\(d\subset\left(P\right)\) nên \(AB\subset\left(P\right)\)
=>d vuông góc A'A
Do đó: nếu d vuông góc a' thì d vuông góc mp(a,a')
=>d vuông góc a
b: Nếu d vuông góc a thì d vuông góc mp(a,a')
=>d vuông góc a'