Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta co : (x+1)=0 va (x-4)=0
TH1:
(x+1)=0
x = 0-1
x = -1
TH2:
(x-4)=0
x = 0 - 4
x = -4
=>x=-4 va x=-1
a) Ta có \(\hept{\begin{cases}x^2\ge0\forall x\\\left(y-\frac{1}{3}\right)^2\ge0\forall y\end{cases}\Rightarrow}x^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=0\\y-\frac{1}{3}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=\frac{1}{3}\end{cases}}\)
Vậy x = 0 ; y = 1/3 là giá trị cần tìm
b) Ta có : \(\hept{\begin{cases}\left|2x-1\right|\ge0\forall x\\\left|x-3y+2\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|2x-1\right|+\left|x-3y+2\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\x-3y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\-3y=-\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}}\)
Vạy \(x=y=\frac{1}{2}\)là giá trị cần tìm
a) Ta có : \(\hept{\begin{cases}x^2\ge0\forall x\\\left(y-\frac{1}{3}\right)^2\ge0\forall y\end{cases}}\Rightarrow x^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x,y\)
Kết hợp với đề bài => Chỉ xảy ra trường hợp x2 + ( y - 1/3 )2 = 0
=> x = 0 ; y = 1/3
b) \(\hept{\begin{cases}\left|2x-1\right|\\\left|x-3y+2\right|\end{cases}\ge}0\forall x,y\Rightarrow\left|2x-1\right|+\left|x-3y+2\right|\ge0\forall x,y\)
Dấu "=" xảy ra khi x = 1/2 ; y = 5/6
a)
2009-|x-2009|=x
=> 2009-x=|x-2009|
=> 2009-x=|2009-x|
=> 2009-x=2009-x
vậy với mọi giá trị x thuộc R thoả mãn yêu cầu đề bài
b)
(2x-1)2008+(y-2/5)2008 +|x+y+z|=0
ta có: (2x-1)2008 luôn lớn hơn hoặc bằng 0
(y-2/5)2008 luôn lớn hơn hoặc bằng 0
|x+y+z| luôn lớn hơn hoặc bằng 0
dấu "=" xảy ra khi
2x-1=y-2/5=x+y+z=0
+2x-1=0=> 2x=1=> x=1/2
+y-2/5=0=> y=2/5
+x+y+z=0=> 1/2+2/5+z=0
=> z=-9/10
c) Ta có(x-1)2 >= 0 với mọi x
(y+3)2>=0 với mọi c
=> (x-1)2+(y+3)2 >= 0 với mọi x,y
Dấu bằng xảy ra khi và chỉ khi
(x-1)2=0 và (y+3)2=0
=> x=1 và y=-3
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
1)Ta có: 2009 = 2010 - 1 = x - 1(do x = 2010).
Thay 2009 = x - 1 vào đa thức A(x), ta có:
A(2010)=x^2010 - (x-1).x^2009 - (x-1).x^2008 - ... - (x-1).x +1
=x^2010 - x^2010 + x^2009 - x^2008 +x^2008 - ... - x^2 + x +1
=x+1=2010 + 1 =2011.
Vậy giá trị của đa thức A(x) tại x =2010 là 2011
|x+1|>=0 với mọi x
=>2|x+1|>=0 với mọi x
mà (x+y)^2>=0 với mọi x,y
nên 2|x+1|+(x+y)^2>=0 với mọi x,y
Dấu = xảy ra khi x+1=0 và x+y=0
=>x=-1 và y=1
cảm ơn a