Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) B = 2 + 22 + ...... + 260
B = (2 + 22 + 23 + 24) + .... + (267 + 368 + 269 + 270)
B = (1.2 + 1.4 + 1.8 + 1.16) + ..... + (266.2 + 266.4 + 266.8 + 266.16)
A = 1.(2+4+8+16) + .... + 266(2+4+8+16)
A = 1.30 + ... + 266.30
A = 30.(1+24+....+266)
Vậy A chia hết cho 30
Câu b: Tham khảo ở Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
a﴿ B = 2 + 2^2 + ...... + 2^60
B = ﴾2 + 2^ 2 + 2 ^3 + 2 ^4 ﴿ + .... + ﴾2 ^67 + 3^ 68 + 2 ^69 + 2^ 70 ﴿
B = ﴾1.2 + 1.4 + 1.8 + 1.16﴿ + ..... + ﴾2 ^66 .2 + 2 ^66 .4 + 2 ^66 .8 + 2 ^66 .16﴿
B = 1.﴾2+4+8+16﴿ + .... + 2 ^66 ﴾2+4+8+16﴿
B = 1.30 + ... + 2^ 66 .30
B = 30.﴾1+2 ^4+....+2 ^66 ﴿
=>B là bội của 30 mà 30 là bội của 15
=>B là bội chủa 15
b/Xét hiệu:
A=9.﴾7x+4y﴿‐2.﴾13x+18y﴿
=>A=63x+36y‐26x‐36y
=>A=37x => A chia hết cho 37
Vì 7x+4y chia hết cho 37
=>9.﴾7x+4y﴿ chia hết cho 37
Mà A chia hết cho 37
=>2.﴾13x+18y﴿ chia hết cho 37
Do 2 và 37 nguyên tố cùng nhau
=>13x+18y chia hết cho 37
Vậy nếu 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37
a) tự giải
b) Ta có CT dãy số lũy thừa
\(a^0+a^1+a^2+...+a^t=\dfrac{a^{t+1}-a^0}{a-1}\)
Mà Mọi số , phép khai căn mũ 0 = 1 nhưng 0 mũ 0 =1 => tập hợp rỗng => Áp dụng đc CT trên
cho nên Tổng A=\(\dfrac{3^{2012+1}-1}{3-1}=\dfrac{3^{2013}-1}{2}\)
lấy B -A, ta đc
\(\dfrac{1}{2}\)
cm
https://icongchuc.com/cac-dang-bai-toan-lien-quan-tong-day-luy-thua-cung-co-so-38128.html
1) Chứng tỏ:
a) ab + ba chia hết cho 11.
Ta có: ab + ba = 10a + b + 10b + a
= 11a + 11b
= 11( a + b )
Vì 11( a + b ) chia hết cho 11 nên ab + ba chia hết cho 11 ( đpcm )
b) ab - ba chia hết cho 9.
Ta có: ab - ba = 10a + b - (10b + a)
= 10a + b - 10b - a
= 9a - 9b
= 9( a - b )
Vì 9( a - b ) chia hết cho 9 nên ab - ba chia hết cho 9.
2) Chứng tỏ:
a) Nếu ( ab + cd ) chia hết cho 99 thì abcd chia hết cho 99.
Ta có: ab + cd chia hết cho 99
=> 99ab + ab + cd chia hết cho 99.
=> 100ab + cd chia hết cho 99.
=> abcd chia hết cho 99 ( đpcm )
b) Nếu ( abc + def ) chia hết cho 37 thì abcdef chia hết cho 37.
Ta có: abcdef = 1000abc + def = 999abc + abc + def = 37.27abc + (abc + def)
Vì 37.27abc chia hết cho 37 nên nếu abc + def chia hết cho 37 thì abcdef chia hết cho 37.
~ Huhu, cho mình xin lỗi, phần 3 mình không có thời gian để làm TwT ~
Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Bài 1: CM A = n2 + n + 6 ⋮ 2
+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)
Khi đó: A = (2k)2 + 2k + 6
A = 4k2 + 2k + 6
A = 2.(2k2 + k + 3) ⋮ 2
+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ
Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn
⇒ A = n2 + n + 6 là số chẵn
A = n2 + n + 6 ⋮ 2
+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N
Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:
Bài 2: CM: A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N
Với n = 1 ta có: A = 13 + 1.5
A = 1 + 5 = 6 ⋮ 6
Giả sử A đúng với n = k (k \(\in\) N)
Khi đó ta có: A = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)
Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k + 1
Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6
Thật vậy với n = k + 1 ta có:
A = (k + 1)3 + 5(k + 1)
A = (k +1).(k + 1)(k + 1) + 5.(k +1)
A = (k2 + k + k +1).(k + 1) + 5k +5
A = [k2 + (k + k) + 1].(k + 1) + 5k + 5
A = [k2 + 2k + 1].(k + 1) + 5k + 5
A = k3 + k2 + 2k2 + 2k + k +1 +5k +5
A = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5)
A = (k3 + 5k) + 3k2 + 3k + 6
A = (k3 + 5k) + 3k(k +1) + 6
k.(k +1) là tích của hai số liên tiếp nên luôn chia hết cho 2
⇒ 3.k.(k + 1) ⋮ 6 (2)
6 ⋮ 6 (3)
Kết hợp (1); (2) và (3) ta có:
A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N
Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm)
\(A=3.\left(3^4\right)^{10}+2\)
Do 34 có tận cùng là 1 nên A có tận cùng là 5 nên chia hết cho 5
\(B=2.\left(2^4\right)^n+3\)
Do 24 có tận chùng là 6 nên (24)n có tận cùng là 6 => 2.(24)n có tận cùng là 2 => B có tận cùng là 5 nên chia hết cho 5
Trường hợp còn lại là tương tự
1)Có 7x+4y chia hết cho 37 =>7x chia hết cho 37 ; 4y chia hết cho 37 (37 là số nguyên tố)
Vì 7 và 4 không chia hết cho 37 => x và y chia hết cho 37
=> 13x chia hết cho 37 ; 18y chia hết cho 37
=> 13x+18y chia hết cho 37
2) A = 1/2+3/2+3/2^2+...+3/2^2012
=>2A = 1+3+3/2+...+3/2^2011
=>A = 4 - (1/2+3/2^2011)
Lấy B - A là xong