Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tự giải
b) Ta có CT dãy số lũy thừa
\(a^0+a^1+a^2+...+a^t=\dfrac{a^{t+1}-a^0}{a-1}\)
Mà Mọi số , phép khai căn mũ 0 = 1 nhưng 0 mũ 0 =1 => tập hợp rỗng => Áp dụng đc CT trên
cho nên Tổng A=\(\dfrac{3^{2012+1}-1}{3-1}=\dfrac{3^{2013}-1}{2}\)
lấy B -A, ta đc
\(\dfrac{1}{2}\)
cm
https://icongchuc.com/cac-dang-bai-toan-lien-quan-tong-day-luy-thua-cung-co-so-38128.html
a﴿ n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+﴿ n chia cho 3 dư 1 : n = 3k + 1 => n 2 = ﴾3k +1﴿.﴾3k +1﴿ = 9k 2 + 6k + 1 = 3.﴾3k 2 + 2k﴿ + 1 => n 2 chia cho 3 dư 1
+﴿ n chia cho 3 dư 2 => n = 3k + 2 => n 2 = ﴾3k +2﴿.﴾3k+2﴿ = 9k 2 + 12k + 4 = 3.﴾3k 2 + 4k +1﴿ + 1 => n 2 chia cho 3 dư 1
Vậy n2 : 3 dư1
b﴿ p là số nguyên tố > 3 => p lẻ => p 2 lẻ => p 2 + 2003 chẵn => p 2 + 2003 là hợp số
Hồi nãy mình trả lời rồi mà
a) Nếu n = 3k+1 thì n2n2 = (3k+1)(3k+1) hay n2n2 = 3k(3k+1)+3k+1
Rõ ràng n2n2 chia cho 3 dư 1
Nếu n = 3k+2 thì n2n2 = (3k+2)(3k+2) hay n2n2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n2n2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p2p2 chia cho 3 dư 1 tức là p2=3k+1p2=3k+1 do đó p2+2003=3k+1+2003p2+2003=3k+1+2003 = 3k+2004⋮⋮3
Vậy p2+2003p2+2003 là hợp số
a) n là số ko chia hết cho 3 => có dạng 3k +1. Ta có : (3k+1) 2 = 3k2 + 12 . Ta có 3k ^2 chia hết cho 3 ; 1^2 chia 3 dư 1 => n ^2 chia ba dư 1
b) vì p là SNT lớn hơn 3 => p^2 chia cho 3 có dạng 3k +1 . Ta có 3k+1 + 2003 = 3k + 2004 chia hết cho 3 => là hợp số
a) Vì n là số không chia hết cho 3 nên n có dạng 3k+1 hoặc 3k+2
+) n = 3k+1 => n2 = (3k+1)2
= 9k2 + 6k +1
Có 9k2 \(⋮\)3 ; 6k \(⋮\)3 ; 1 \(⋮\) 3 dư 1 => 9k2 +6k +1 chia 3 dư 1
hay n2 chia 3 dư 1 (1)
+) n= 3k+2 => n2 = (3k+2)2 = 9k2 +12k + 4
Có 9k2 \(⋮\)3 ; 12k\(⋮\)3 ; 4 chia 3 dư 1 => 9k2 +12k +4 chia 3 dư 1
hay n2 chia 3 dư 1 (2)
Từ (1),(2) => đpcm
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
1)Có 7x+4y chia hết cho 37 =>7x chia hết cho 37 ; 4y chia hết cho 37 (37 là số nguyên tố)
Vì 7 và 4 không chia hết cho 37 => x và y chia hết cho 37
=> 13x chia hết cho 37 ; 18y chia hết cho 37
=> 13x+18y chia hết cho 37
2) A = 1/2+3/2+3/2^2+...+3/2^2012
=>2A = 1+3+3/2+...+3/2^2011
=>A = 4 - (1/2+3/2^2011)
Lấy B - A là xong
Câu a)
Sử dụng đồng dư.