K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lời giải:

a. $BD\perp BC, BD=BC$ nên tam giác $BDC$ vuông cân tại $B$

$\Rightarrow \widehat{C}=45^0$

$\widehat{ABC}=180^0-\widehat{C}=180^0-45^0=135^0$

b.

Ta có: $\widehat{ABD}=\widehat{ABC}-\widehat{DBC}=135^0-90^0=45^0$ nên tam giác $ABD$ vuông cân tại $A$

$\Rightarrow AD=AB=3$ 

Áp dụng định lý Pitago:

$BD=\sqrt{AB^2+AD^2}=\sqr{3^2+3^2}=3\sqrt{2}$ (cm)

$BC=BD=3\sqrt{2}$ (cm)

Tam giác $BDC$ vuông cân tại $B$ nên áp dụng định lý Pitago:

$DC=\sqrt{BC^2+BD^2}=\sqrt{(3\sqrt{2})^2+(3\sqrt{2})^2}=6$ (cm)

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Hình vẽ:

20 tháng 4 2019

A B C D K O F I E

26 tháng 7 2017

Xin lỗi  mình ko làm được nhưng mình kb rồi

20 tháng 12 2019

Bạn tự kẻ hình nhé.

a)

Kẻ BK vuông góc với BD (K thuộc DC).

Vì AC vuông góc với BD , BD vuông góc với BK nên AC // BK.

Xét tứ giác ABKC có: AB// CK (vì AB//CD) ; AC//BK.

=> Tứ giác ABKC là hình bình hành.   (1)

=> AB = CK.

=> CK = 5 (cm).

Ta có: DC + CK = DK

=>      DK = 10 + 5 = 15 (cm)

Từ (1) => AC = BK => BK = 12(cm)

Xét tam giác BDK vuông tại B có: 

           BD2 + BK2 = DK2

           BD2 + 122  = 152

           BD2 + 144 = 225

          BD2            = 81

 =>     BD = 9 (cm)     (vì BC>0)

Vậy BD = 9cm

b)

Gọi O là giao của BD và AC

Ta có:  SABCD = SABD + SBCD

            SABCD = 1/2  x OA x BD + 1/2 x OC x BD

            SABCD = 1/2 x BD x ( OA + OC)             

            SABCD  = 1/2 x  BD x AC

            SABCD = 1/2 x 9 x 12 = 54 (cm2)

Vậy SABCD = 54 cm2.

           

18 tháng 11 2018

A B C D M G H O

18 tháng 11 2018

a, \(\widehat{BMG}=\widehat{AHD}\left(=\widehat{BAH}\right)\)

\(\Delta ADH\infty\Delta GBM\left(g.g\right)\Rightarrow\frac{AD}{GB}=\frac{DH}{BM}\Rightarrow AD.BM=GB.DH\)

Mặt khác, \(AD.BM=a.\frac{a}{2}=\frac{1}{2}a^2\)

\(OB.OD=\left(\frac{a}{\sqrt{2}}\right)^2=\frac{1}{2}a^2\Rightarrow AD.BM=OB.OD=GB.DH\)

\(\Rightarrow\frac{BO}{BG}=\frac{DH}{OD}\Rightarrow BO^2=BG.DH\left(OB=OD\right)\)

b, \(\Delta BOG\infty\Delta DHO\left(c.g.c\right)\Rightarrow\widehat{BGO}=\widehat{DOH}\)

Mà \(\widehat{BOG}+\widehat{BGO}=180^0-\widehat{OBG}=135^0\Rightarrow\widehat{BOG}+\widehat{DOH}=135^0\Rightarrow\widehat{GOH}=45^0\)

3 tháng 8 2020

a.Gọi giao của AC và BD là O , do hai đường chéo vuông góc

=> các tam giác : OAB, OBC, OCD, ODA là các tam giác vuông tại O
xét tam giác OAB có AB^2 = OA^2 + OB^2 (1)
xét tam giác ODC có DC^2 = OD^2 + OC^2 (2)
xét tam giác OAD có AD^2 = OA^2 + OD^2 (3)
xét tam giác OBC có BC^2 = OC^2 + OB^2 (4)
từ (1) và (2)=> AB^2 + CD^2 = OA^2 +OB^2 +OC^2 +OD^2 (5)
từ (3) và (4)=> BC^2 + AD^2 = OA^2 +OB^2 +OC^2 +OD^2 (6)
từ (5) và (6) => AB^2 + CD^2 = BC^2 + AD^2 (điều phải c/m )

mik chỉ làm được ý a thôi 

xin lỗi bạn

17 tháng 8 2021

bạn giỏi thật mik còn ko làm dc câu a đây :((((