Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 câu trả lời ở đâu vậy bạn??? :V
( có cc a giải cho nhé
Thân )
a) Xét tam giác ABC và tam giác BAD, ta có:
AB: cạnh chung
AC=AD (ABCD:hình thang cân)
BC=AD (ABCD: hình thang cân)
=>Tam giác ABC = tam giác BAD (c-c-c)
=>\(\widehat{ACB}\)=\(\widehat{BDA}\)(2 góc t/ứng)
Ta có:
\(\widehat{ACD=}\widehat{ACB}\)+\(\widehat{BCD}\)
BDC^ = BDA^ + ADC^
ACD^ = BDC^ (ABCD: hình thang cân)
ACB^ = BDA^ (cmt)
=>BCD^ = ADC^
Ta lại có AB//CD (gt):
=> ABC^ = BCD^ (2 góc sole trong)
BAD^ = ADC^ (2 góc sole trong)
BCD^ = ADC^ (cmt)
=> ABC^ = BAD^
Ta có ME//BC (gt):
=> MEA^ = ABC^ (2 góc sole trong)
Mà ABC^ = BAD^ (cmt)
=> MEA^ = BAD^
Mặt khác: MAE^ = BAD^ ( 2 góc đối đỉnh)
=> MEA^ = MAE^
=> Tam giác MAE cân tại M.
MIK xin lỗi, mik đánh sai đề bài, sửa lại như sau:
a) Tam giác MAE cân
b) AF = DE
bạn tự vẽ hình nhé :)
a) ABCE là hình thang có 2 cạnh bên song song => AC=BE mà AC=BD => BE=BD => tam giác BDE cân tại B
b) tam giác BDE cân tại B => góc BDC=góc E mà góc ACD=góc E (2 góc đồng vị, AC//BE) => góc BDC= góc ACD
từ đó, chứng minh đc tg ACD=BDC (c-g-c)
c) tg ACD=BDC => góc ADC=góc BCD (2 góc tương ứng) => đpcm
tg BDE cân tại B:
ta có:ACD=BAC(AB//CD)
mà ACD =BEC =>BEC=BAC
xét tg ABC va tg ECB
+BC chung
+ACB=EBC(so le trong)
+BEC=BAC(cm trên )
=>tam giac ABC =tam giac ECB
=>BDC=BEC
ma `BEC=ACD(đồng vị)
=>ACD=BDC
xét tg ACD va tg BDC,ta có :
+DC chung
+ACD=BDC
+AC=BD(gt)
=>tg ACD = tg BDC
=>ADC=BCD
=>ABCD la hình thang cân (đpcm)