Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
A B C D G K M F E
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
A B C M N 38 11 8
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
a.
Theo định lý Thales,ta có:
\(OE//BC\) nên \(\frac{AE}{EB}=\frac{AO}{OC}\left(1\right)\)
\(OF//CD\) nên \(\frac{AF}{FD}=\frac{AO}{OC}\left(2\right)\)
Từ (1);(2) suy ra \(\frac{AE}{EB}=\frac{AF}{FD}\Rightarrow FE//BD\) theo ĐL Thales đảo.
b.
Theo định lý Thales,ta có:
\(OG//AB\) nên \(\frac{AO}{OC}=\frac{BG}{GC}\left(3\right)\)
\(OH//AD\) nên \(\frac{AO}{OC}=\frac{DH}{HC}\left(4\right)\)
Từ (3);(4) suy ra:\(\frac{BG}{GC}=\frac{DH}{HC}\Rightarrow BG\cdot CH=CG\cdot DH\left(đpcm\right)\)
+ \(\left\{{}\begin{matrix}AB//NF\\CD//ME\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\widehat{OMB}=\widehat{ONF}\\\widehat{OME}=\widehat{ONC}\end{matrix}\right.\)
\(\Rightarrow360^o-\left(\widehat{ONF}+\widehat{ONC}\right)=360^o-\left(\widehat{OMB}+\widehat{OME}\right)\)
\(\Rightarrow\widehat{FNC}=\widehat{EMB}\)
+ AB // NF \(\Rightarrow\frac{NF}{MB}=\frac{ON}{MO}\)
+ CD // ME \(\Rightarrow\frac{NC}{ME}=\frac{ON}{OM}=\frac{NF}{MB}\)
\(\Rightarrow\frac{NC}{NF}=\frac{ME}{MB}\)
+ ΔBME ∼ ΔFNC ( c.g.c )
\(\Rightarrow\widehat{BEM}=\widehat{FCN}\)
+ ME // CD \(\Rightarrow\widehat{MEA}=\widehat{ACN}\)
\(\Rightarrow\widehat{MEA}+\widehat{BEM}=\widehat{ACN}+\widehat{NCF}\)
\(\Rightarrow\widehat{BEA}=\widehat{ACF}\) => BE // CF