K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2021

\(1,\\ a,ĐK:m\ne1\\ \Delta=49+48\left(m-1\right)=48m+1\\ \text{PT vô nghiệm }\Leftrightarrow48m+1< 0\Leftrightarrow m< -\dfrac{1}{48}\\ \text{PT có nghiệm kép }\Leftrightarrow48m+1=0\Leftrightarrow m=-\dfrac{1}{48}\\ \text{PT có 2 nghiệm phân biệt }\Leftrightarrow48m+1>0\Leftrightarrow m>-\dfrac{1}{48};m\ne1\)

\(b,\Delta=4\left(m-1\right)^2+4\left(2m+1\right)=4m^2+8>0,\forall m\\ \text{Vậy PT có 2 nghiệm phân biệt với mọi m}\\ 2,\\ \text{PT có 2 nghiệm phân biệt }\)

\(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2-1\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+4>0\\ \Leftrightarrow8m+8>0\\ \Leftrightarrow m>-1\)

3 tháng 11 2018

A. \(x^2-2mx+m^2-2m+1=0\)

Ta có: Δ = \(b^2-4ac\)

= \(\left(-2m\right)^2-4.\left(m^2-2m+1\right)\)

= \(4m^2-4m^2+8m-4\)

= 8m - 4

+Nếu Δ > 0

⇔ 8m - 4 > 0

⇔ m > \(\dfrac{1}{2}\)

Phương trình có hai nghiệm phân biệt:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2m+\sqrt{8m-4}}{2}=m+\sqrt{2m-1}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2m-\sqrt{8m-4}}{2}=m-\sqrt{2m-1}\)

+Nếu Δ =0

⇔ 8m - 4 = 0

⇔ m = \(\dfrac{1}{2}\)

phương trình có nghiệm kép:

\(x_1=x_2=\dfrac{-b}{2a}=\dfrac{2m}{2}=m\) = \(\dfrac{1}{2}\)

+Nếu Δ < 0

⇔ 8m - 4 < 0

⇔ m< \(\dfrac{1}{2}\)

Phương trình vô nghiệm

B. \(x^2+\left(m-1\right)x-2m^2+m=0\)

Ta có: Δ = \(b^2-4ac\)

= \(\left(m-1\right)^2-4\left(-2m^2+m\right)\)

= \(m^2-2m+1+8m^2-4m\)

= \(9m^2-6m+1\)

+Nếu Δ > 0

\(9m^2-6m+1\) > 0

⇔ m ≠ \(\dfrac{1}{3}\)

Phương trình có hai nghiệm phân biệt:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-m+1+\sqrt{9m^2-6m+1}}{2}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-m+1-\sqrt{9m^2-6m+1}}{2}\)

+Nếu Δ = 0

\(9m^2-6m+1=0\)

⇔ m = \(\dfrac{1}{3}\)

Phương trình có nghiệm kép:

\(x_1=x_2=\dfrac{-b}{2a}=\dfrac{-\left(m-1\right)}{2}=\dfrac{-\left(\dfrac{1}{3}-1\right)}{2}=\dfrac{1}{3}\)

+Nếu Δ < 0

\(9m^2-6m+1< 0\)

⇔ m ∈ ∅

30 tháng 11 2022

Bài 3:

a: Để pt có hai nghiệm trái dấu thì m+5<0

=>m<-5

b: \(\text{Δ}=\left(m+2\right)^2-4\left(m+5\right)\)

\(=m^2+4m+4-4m-20=m^2-16\)

Để phương trình có hai nghiệm phân biệt thì m^2-16>0

=>m>4 hoặc m<-4

c: x1^2+x2^2=23

=>(x1+x2)^2-2x1x2=23

=>(m+2)^2-2(m+5)=23

=>m^2+4m+4-2m-10-23=0

=>m^2+2m-29=0

hay \(m=-1\pm\sqrt{30}\)

d: Để pt có hai nghiệm âm phân biệt thì

\(\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\m+2< 0\\m+5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\-5< m< -2\end{matrix}\right.\Leftrightarrow m\in[-4;-2)\)

NV
6 tháng 11 2019

a/ \(\Leftrightarrow\left(x-1\right)\left(x^2-2mx+m+12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-2mx+m+12=0\left(1\right)\end{matrix}\right.\)

Để pt đã cho có 3 nghiệm pb thì (1) có 2 nghiệm pb khác 1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m-12>0\\13-m\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>4\\m< -3\end{matrix}\right.\\m\ne13\end{matrix}\right.\)

b/ \(\Leftrightarrow\left(x-m\right)\left(x^2-mx+m^2-1\right)=0\)

Sau đó làm tương tự câu a

c/ Bạn coi lại đề, câu này ko cô lập được nghiệm nào cả, nên ko giải theo kiểu lớp 10 được

Bài 2: 

a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)

\(=16m^2+16m+4-16m-12=16m^2-8\)

Để phương trình có hai nghiệm thì \(2m^2>=1\)

=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)

c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)

\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)

\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)

\(=64m^3+96m^2+48m+8-48m^2-60m-18\)

\(=64m^3+48m^2-12m-10\)

NV
18 tháng 2 2020

Để BPT vô nghiệm thì:

a/ \(\left\{{}\begin{matrix}2m^2+m-6< 0\\\Delta'=\left(m-3\right)^2+\left(2m^2+m-6\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m-6< 0\\3m^2-5m+3< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-2< m< \frac{3}{2}\\3\left(m-\frac{5}{6}\right)^2+\frac{11}{12}< 0\end{matrix}\right.\)

Không tồn tại m thỏa mãn

b/ \(\left\{{}\begin{matrix}m+2>0\\\Delta'=\left(m-1\right)^2-4\left(m+2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m^2-6m-7< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m>-2\\-1< m< 7\end{matrix}\right.\) \(\Rightarrow-1< m< 7\)

20 tháng 11 2022

1: TH1: m=0

=>-x-2=0

=>x=-2(loại)

TH2: m<>0

\(\text{Δ}=\left(2m-1\right)^2-4m\left(m-2\right)\)

=4m^2-4m+1-4m^2+8m

=4m+1

Đểphương trình có 2 nghiệm pb thì 4m+1>0

=>m>-1/4

2: TH1: m=1

Pt sẽ là -2x-1=0

=>x=-1/2(nhận)

TH2: m<>1

\(\text{Δ}=\left(-2m\right)^2-4\left(m-1\right)\left(m-2\right)\)

=4m^2-4(m^2-3m+2)

=-4(-3m+2)

=12m-8

Để phương trình có 1 nghiệm thì 12m-8=0

=>m=2/3

9 tháng 11 2018

thấy x bật nhất thì dùng biện luận theo kiểu bật nhất

thấy x bật 2 thì dùng denta

19 tháng 11 2022

a: =>x(m-2)(m+2)=-m+2

Để phương trình có nghiệm duy nhất thì (m-2)(m+2)<>0

=>m<>2; m<>-2

Đểphương trình vô nghiệm thì m+2=0

=>m=-2

Để phương trình có vô số nghiệm thì m-2=0

=>m=2

b: \(\Leftrightarrow x\left(m^2-16\right)=4m\)

Để phương trình có nghiệm duy nhất thì m^2-16<>0

hay \(m\notin\left\{4;-4\right\}\)

Để phương trình vô nghiệm thì m^2-16=0

=>m=4 hoặc m=-4

c: TH1: m=3

Pt sẽ là 4x-2=0

=>x=1/2

TH2: m<>3

\(\text{Δ}=4^2-4\cdot\left(-2\right)\cdot\left(m-3\right)\)

=16+8(m-3)

=8m-24+16=8m-8

Để phương trình vô nghiệm thì 8m-8<0

=>m<1

Để phương trình có nghiệm duy nhất thì 8m-8=0

=>m=1
Để phương trình có hai nghiệm phân biệt thì 8m-8>0

=>m>1

d: \(\text{Δ}=\left(-5\right)^2-4\left(2m-1\right)\)

=25-8m+4

=-8m+29

Để phương trình vô nghiệm thì -8m+29<0

=>-8m<-29

=>m>29/8

Để phương trình có nghiệm duy nhất thì -8m+29=0

=>m=29/8

Để phương trình có hai nghiệm phân biệt thì -8m+29>0

=>m<29/8