K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

Ta có : 3(2x - 1)2 \(\ge0\forall x\)

           7(3y + 5)2 \(\ge0\forall x\)

Mà : 3(2x - 1)2 + 7(3y + 5)2 = 0 

Nên : 3(2x - 1)2 = 7(3y + 5)2 = 0 

\(\Leftrightarrow\hept{\begin{cases}3\left(2x-1\right)^2=0\\7\left(3y+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)=0\\\left(3y+1\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x=1\\3y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)

30 tháng 9 2020

a. Ta có : (x + y)[(x - y)2 + xy]

= (x + y)(x2 - 2xy + y2 + xy)

= (x + y)(x2 - xy + y2)

= x3 + y3 

b. Ta có : x3 + y3 - xy(x + y) 

= x3 + y3 - x2y - xy2

=x2(x - y) + y2(y - x)

= (x - y)(x2 - y2)

= (x - y)2.(x + y) đpcm

c) Ta có (x + y)3 - 3xy(x + y)

= (x + y)[(x + y)2 - 3xy)

= (x + y)(x2 + 2xy + y2 - 3xy)

= (x + y)(x2 - xy + y2) (đpcm)

30 tháng 9 2020

a) VP = ( x + y )( x2 - 2xy + y2 + xy ) = ( x + y )( x2 - xy + y2 ) = x3 + y3 = VT ( đpcm )

b) VP = ( x + y )( x - y )2 = ( x + y )( x2 - 2xy + y2 ) = x3 - 2x2y + xy2 + x2y - 2xy2 + y3 = x3 + y3 - x2y - xy2 = x3 + y3 - xy( x + y ) = VT ( đpcm )

c) VP = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = x3 + y3 = ( x + y )( x2 - xy + y2 ) = VT ( đpcm )

18 tháng 6 2019

Cho\(\frac{x}{a}=\frac{y}{b}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\end{cases}}\)

Ta thấy 

\(\left(x^2+y^2\right)\left(a^2+b^2\right)=\left(a^2k^2+b^2k^2\right)\left(a^2+b^2\right)=k^2\left(a^2+b^2\right)\left(a^2+b^2\right)=k^2\left(a^2+b^2\right)^2\)

\(\left(ax+by\right)^2=\left(a.ak+b.bk\right)^2=\left(a^2k+b^2k\right)^2=\left[k\left(a^2+b^2\right)\right]^2=k^2\left(a^2+b^2\right)^2\)

Vậy \(\left(x^2+y^2\right)\left(a^2+b^2\right)=\left(ax+by\right)^2\left(ĐPCM\right)\)

18 tháng 6 2019

Có x/a = y/b => xb = ya(1) 

<=> x2b= y2a2(2)

Có (x2 + y2)(a+ b2) = x2a+ y2a2 + x2b2 + y2b2

= x2a2 + y2b2 + x2b2 + y2a2 (3).

Thay (2) vào (3) ta được: (x2 + y2)(a2 + b2) = x2a2 + y2b2 + 2x2b2 = x2a+ y2b2 + 2xbxb (4)

Thay (1) vào (4) ta có: (x2 + y2)(a2 + b2) = x2a2 + y2b2 + 2xbay = (ax + by)2 (đpcm)