K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

Ta có : 3(2x - 1)2 \(\ge0\forall x\)

           7(3y + 5)2 \(\ge0\forall x\)

Mà : 3(2x - 1)2 + 7(3y + 5)2 = 0 

Nên : 3(2x - 1)2 = 7(3y + 5)2 = 0 

\(\Leftrightarrow\hept{\begin{cases}3\left(2x-1\right)^2=0\\7\left(3y+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)=0\\\left(3y+1\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x=1\\3y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)

29 tháng 5 2017

thì có ai bắt bn trả lời đâu!

29 tháng 5 2017

mk mới học lớp 5 thôi hỏi lớp 8 lận

17 tháng 7 2017

a, \(\left\{{}\begin{matrix}3\left(2x-1\right)^2\ge0\\7\left(3y+5\right)^2\ge0\end{matrix}\right.\Rightarrow3\left(2x-1\right)^2+7\left(3y+5\right)^2\ge0\)

\(3\left(2x-1\right)^2+7\left(3y+5\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}3\left(2x-1\right)^2=0\\\left(3y+5\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-5}{3}\end{matrix}\right.\)

Vậy...

b, \(x^2+y^2-2x+10y+26=0\)

\(\Leftrightarrow x^2-2x+1+y^2+10+25=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)

\(\left(x-1\right)^2+\left(y+5\right)^2\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)

Vậy...

26 tháng 3 2018

bài này đc sài máy tính hem. cách sài máy tính lẹ hơn

26 tháng 3 2018

tùy bạn

18 tháng 9 2016

\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)

\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)

\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)

\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)

19 tháng 9 2016

bài 4 í, có chắc đề đúng ko z

đề bài => 8x3 - y+ 8x+ y3 - 16x+ 16xy = 32

=> 16xy = 32

=> xy = 2

=>\(\left[\begin{array}{nghiempt}x=1=>y=2\\x=-1=>y=-2\\x=2=>y=1\\x=-2=>y=-1\end{array}\right.\)

a, \(x^2+y^2-2x+10y+26=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+10y+25\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-5\end{cases}}\)

b,\(4x^2+2y^2+2xy-2y+1=0\)

\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(2x+y\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+1=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)

c,\(5x^2+9y^2-12xy+4x+4=0\)

\(\Rightarrow\left(x^2+4x+4\right)+\left(4x^2-12xy+9y^2\right)=0\)

\(\Rightarrow\left(x+2\right)^2+\left(2x-3y\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x+2=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\2.\left(-2\right)-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-\frac{4}{3}\end{cases}}\)

d,\(5x^2+9y^2-6xy-4x+1=0\)

\(\Rightarrow\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^x\right)=0\)

\(\Rightarrow\left(2x+1\right)^2+\left(x-3y\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}2x+1=0\\x-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\-\frac{1}{2}-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{1}{6}\end{cases}}\)

9 tháng 8 2015

\(a\text{) }pt\Leftrightarrow\left(y^2+2y+1\right)+\left[\left(2^x\right)^2-2.2^x+1\right]=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

\(\Leftrightarrow y+1=0\text{ và }2^x-1=0\)

\(\Leftrightarrow y=-1\text{ và }x=0\)

\(b\text{) }pt\Leftrightarrow\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow x+y=0\text{ và }x-1=0\text{ và }y+1=0\)

\(\Leftrightarrow x=1\text{ và }y=-1\)