Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các cặp số có tổng bằng 3000 trong khoảng từ 1 đến 3000 là:
(1499;1501) ; (1498;1502) ; .... ; (978;2022) ; (977;2023) (523 cặp/1046 số hạng)
Vậy có 3000 - 1046 = 1954 số từ 1 - 3000 không được sử dụng
Trường hợp xấu nhất là bốc ra 1954 số đó cùng với 523 số của 523 cặp khác nhau thì vẫn chưa có 2 số có tổng bằng 3000 => phải chọn thêm 1 số
=> Cần 1954 + 523 + 1 = 2478 số để chắc chắn có 2 số có tổng bằng 3000
1.
Gọi số cần tìm là \(n\)(\(n\in Z\)|\(n\le0\))
Theo đề bài ta có:
\(5n-6⋮n+3\)
\(5n+15-21⋮n+3\)
\(5\left(n+3\right)-21⋮n+3\)
\(\Rightarrow-21⋮n+3\)
\(\Rightarrow n+3\inƯ\left(-21\right)\)
\(Ư\left(-21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
Ta có bảng sau:
n+3 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -24 | -10 | -6 | -4 | -2 | 0 | 4 | 18 |
Ta thấy n chỉ có 0;4;18 thỏa mãn điều kiện
Vậy các số cần tìm là 0;4;18
Ta lấy 15 số đó chia cho 7 sẽ được các 7 loại số dư từ 0 đến 6
Ta có: 15:7=2 dư 1
Theo nguyên lí Điriclet sẽ có 2 số cùng số dư khi chia cho 7
=> hiệu 2 số sẽ chia hết cho 7
Vậy điều trên là đúng