K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2019

Đáp án A

Không gian mẫu là “Chọn ngẫu nhiên 2 người từ 10 học sinh trong tổ đó”. Suy ra số phần tử trong không gian mẫu là  n ( Ω ) = C 10 2

Gọi A là biến cố “2 người được chọn là nữ” thì kết quả thuận lợi cho biến cố A là  n ( A ) = C 3 2

Vậy xác suất cần tính là  P ( A ) = n ( A ) n ( Ω ) = C 3 2 C 10 2 = 1 15 .

30 tháng 5 2019

NV
18 tháng 6 2021

Không gian mẫu: \(C_{17}^5\)

a. Số cách chọn sao cho có đúng 3 nam (nghĩa là chọn 3 nam từ 9 nam và 2 nữ từ 8 nữ):

\(n_A=C_9^3.C_8^2\)

Xác suất: \(P_A=\dfrac{C_9^3.C_8^2}{C_{17}^5}=...\)

b. Chọn nhiều nhất 1 nữ nghĩa là ta có 2 TH có thể xảy ra: có 1 nữ và 4 nam hoặc cả 5 đều nam

Số cách chọn: \(n_B=C_8^1.C_4^9+C_9^5\)

Xác suất: \(P_B=\dfrac{C_8^1.C_9^4+C_9^5}{C_{17}^5}=...\)

24 tháng 4 2017

30 tháng 5 2023

a) Xác suất là 2/10 hoặc 1/5. 
b) Xác suất là 3/10 hoặc 3/10. Giải bằng công thức hoặc bảng xác suất.

8 tháng 2 2017

Số phân tử của không gian mẫu : \(n\left(\Omega\right)=C_{10}^2C_{10}^2=2970\)

Gọi các giáo viên được chọn có cả nam và nữ là : A

Suy ra A = Các giáo viên được chọn chỉ có nam và nữ

\(n\left(A\right)=C_3^2.C_3^2+C_7^2.C_9^2=765\)

\(n\left(A\right)=C_{10}^2.C_{12}^2-\left(C_3^2.C_3^2+C_7^2.C_9^2=2205\right)\)

\(P\left(A\right)=\frac{49}{66}\)

8 tháng 2 2017

Đề thi khảo sát chất lượng lần 1- THPT Đức Thọ- Hà Tĩnh - Toán 12 - Đặng Ngọc Giáp - Thư viện Đề thi & Kiểm tra

AH
Akai Haruma
Giáo viên
15 tháng 6 2023

Lời giải:

Số học sinh học ít nhất 1 môn toán là:
$36+16=52$ (hs) 

Xác suất để sinh viên học ít nhất 1 môn toán: $\frac{52}{60}$