Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a =11q+3 = 7p+6
=>a+8 =11q+11=7p+14
=> a+8 chia hết cho 11 và 7
=> a+8 chia hết cho 77
a =77k-8
= 77(k-1) +77 -8 =77(k-1) + 69
Vậy a chia cho 77 dư 69
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
Gọi số tự hiên đó là x ta có
x chia 11 dư 3
=> x-3 chia hết cho 11
=> x-3 +11 chia hết cho 11
=> x+8 chia hết cho 11 (1)
x chia 7 dư 6
=> x-6 chia hết cho 7
=> x-6 +14 chia hết cho 7
=> x+8 chia hết cho 7 (2)
Từ (1) và (2)
=> x+8 chia hết cho 77
=> x chia 77 dư 69
KL