Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tiền gửi vào vào là M đồng, lãi suất là r %/tháng.
° Cuối tháng thứ nhất: số tiền lãi là: Mr. Khi đó số vốn tích luỹ đượclà:
T1=M+ Mr= M( 1+r) .
° Cuối tháng thứ hai: số vốn tích luỹ được là:
T2= T1+ T1.r= M( 1+r) 2.
° Tương tự, cuối tháng thứ n: số vốn tích luỹ đượclà: Tn= M( 1+ r) n.
Áp dụng công thức trên với M= 2; r=0,006; n= 24 , thì số tiền người đó lãnh được sau 2 năm (24 tháng) là: T24= 2.( 1+ 0,0065) 24 triệu đồng.
Chọn C
Đây là bài toán lãi kép gửi một lần có công thức :
T=M.\(\left(r+1\right)^n\) trong đó :T:số tiền cả vốn lẫn lãi sau n kì hạn
M :số tiền gửi ban đầu
n:số kì hạn tính lãi
r:lãi suất định kì
như vậy ta có :
250 =100.\(\left(1+7\%\right)^n\)
\(\Leftrightarrow1,07^n\)=2,5 \(\Leftrightarrow\)n=\(\log\left(2,5\right)_{1,07}\) =13,54 vậy là đáp án B sau 13 năm
Số vốn tích luỹ của bác An sau 6 tháng gửi tiền với lãi suất 0,7%/ tháng là:
T1= 5.( 1,007) 6 triệu đồng;
Số vốn tích luỹ của bác An sau 9 tháng gửi tiền ( 3 tháng tiếp theo với lãi suất 0,9%/ tháng) là:
T2= T1. (1,009) 3= 5.(1,007) 6.( 1,009) 3 triệu đồng;
Do đó số tiền bác An lãnh được sau 1 năm (12 tháng) từ ngân hàng ( 3 tháng tiếp theo sau đó với lãi suất 0,6%/ tháng) là:
T= T2. (1,006) 3 ≈ 5452733,453 triệu đồng
Chọn C
Chọn D.
Áp dụng công thức Tn= M( 1+ r) n vớiTn= 5; r= 0,007 và n= 36 thì số tiền người đó cần gửi vào ngân hàng trong 3 năm (36 tháng) là:
triệu đồng.
Chọn D