Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
quãng đường AB dài: \(S=V.t\left(km\right)\)(1)
trong 1/2 thời gian t đi với Vận tốc Trong 1/2 thời gian t đi với vận tốc 5km/h, 1/4 thời gian còn lại đi với vận tốc 4km/h, quãng đường cuối đi với vận tốc 3km/h
\(=>S=V1.\dfrac{t}{2}+V2.\dfrac{t}{4}+V3.\dfrac{t}{4}\)
\(=\dfrac{5t}{2}+t+\dfrac{3t}{4}\left(2\right)\)
(1)(2)\(=>V.t=\dfrac{5t}{2}+t+\dfrac{3t}{4}< =>V.t=\dfrac{10t+4t+3t}{4}\)
\(< =>V.t=\dfrac{17t}{4}=>4.V.t=17t=>V=\dfrac{17t}{4t}=4,25km/h\)
Vậy vận tốc trung bình =4,25km/h
ta có: v1 = 20km/h; v2 = 40km/h; v3 = 30km/h
Quãng đường xe máy đi được trong thời gian t1=(1/3).t là:
S1= t1.v1= (1/3).t.20= (20/3).t
Thời gian xe máy đi với vận tốc v2= 40km/h là:
t2 = (2/3).(t - (1/3).t)= (4/9).t
Quãng đường xe máy đi đc trong thời gian t2=(4/9).t là:
S2=v2.t2=40.(4/9).t= (160/9).t
Thời gian xe máy đi quãng đường cuối cùng là:
t3=t-(1/3).t - (4/9).t = (2/9).t
Quãng đg cuối cùng dài : S3=v3.t3= 30.(2/9).t = (20/3).t
Vận tốc trung bình của xe máy trên cả quãng đường AB là:
vtb=(S1+S2+S3)/t=( (20/3).t + (160/9).t + (20/3).t )/t = 280/9 (km/h)
ta có:
thời gian người đó đi nửa quãng đường đầu là:
\(t_1=\frac{S_1}{v_1}=\frac{S}{2v_1}=\frac{S}{12}\)
thời gian người đó quãng đường còn lại là:
\(t_2=\frac{S_2}{v_2}=\frac{S}{2v_2}=\frac{S}{8}\)
vận tốc trung bình của người đó là:
\(v_{tb}=\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{12}+\frac{S}{8}}=\frac{S}{S\left(\frac{1}{12}+\frac{1}{8}\right)}=\frac{1}{\frac{1}{12}+\frac{1}{8}}=4,8\)
vậy vận tốc trung bình của người đó là 4,8km/h
Mình sẽ nêu cách làm chung của những dạng như này.
Nếu cho biết vận tốc trên từng phần quãng đường:
B1: Tính từng khoảng thời gian t1,t2,...theo tổng quãng đường S
B2: Tính tổng thời gian t=t1+t2+...theo tổng quãng đường S
B3: Áp dụng công thức tính vận tốc trung bình.
Nếu cho biết vận tốc trong từng khoảng thời gian thì làm ngược lại là được.
Giờ ta sẽ áp dụng vô bài.
Đề bài cho ban đầu 1/3 quãng đường đi với vận tốc 20km/h, nghĩa là vận tốc trên từng phần quãng đường trước.
Gọi tổng quãng đường là S
Thời gian đi trên 1/3 quãng đường đầu là:
\(t_1=\dfrac{\dfrac{1}{3}S}{v_1}\left(h\right)\)
Gọi thời gian đi trên 2/3 quãng đường sau là t2
Lúc này bài toán lại đổi về vận tốc trong từng khoảng thời gian
Quãng đường đi được trong 2/3 thời gian còn lại là:
\(s_2=v_2.\dfrac{2}{3}t_2\left(km\right)\)
Quãng đường đi được trong thời gian cuối là:
\(s_3=v_3.\dfrac{1}{3}t_2\left(km\right)\)
Có \(s_2+s_3=\dfrac{2}{3}v_2t_2+\dfrac{1}{3}v_3t_2=t_2\left(\dfrac{2}{3}v_2+\dfrac{1}{3}v_3\right)=\dfrac{2}{3}S\Rightarrow t_2=\dfrac{\dfrac{2}{3}S}{\dfrac{2}{3}v_2+\dfrac{1}{3}v_3}\left(h\right)\)
\(\Rightarrow v_{tb}=\dfrac{S}{t}=\dfrac{S}{t_1+t_2}=\dfrac{S}{\dfrac{1}{3v_1}S+\dfrac{\dfrac{2}{3}S}{\dfrac{2}{3}v_2+\dfrac{1}{3}v_3}}=\dfrac{1}{\dfrac{1}{3v_1}+\dfrac{\dfrac{2}{3}}{\dfrac{2}{3}v_2+\dfrac{1}{3}v_3}}=...\left(km/h\right)\)
Thời gian đi 1/3 quãng đường đầu tiên là :
\(\dfrac{12}{3}:3=\dfrac{4}{3}\left(giờ\right)\)
Thời gian đi 1/4 quãng đương tiếp theo là:
\(\dfrac{12}{3}:4=1\left(giờ\right)\)
Vận tốc trong bình khi đi trên quãng đường AB là:
\(\dfrac{12}{\dfrac{4}{3}+1+\dfrac{3}{2}}\approx3,13\left(\dfrac{km}{h}\right)\)
\(s_1=\dfrac{1}{3}s=v_1t_1\Rightarrow t_1=\dfrac{s}{3v_1}\) (1)
Do \(t_2=2t_3\) nên \(\dfrac{s_2}{v_2}=2.\dfrac{s_3}{v_3}\) (2)
Ta có: s2 + s3 = \(\dfrac{2}{3}s\) (3)
Từ (2) và (3) => \(\dfrac{s_3}{v_3}=t_3=\dfrac{2s}{3\left(2v_2+v_3\right)}\) (4)
=> \(\dfrac{s_2}{v_2}=t_2=\dfrac{4s}{3\left(2v_2+v_3\right)}\) (5)
Từ (1), (4), (5), ta có vận tốc tb của ng đó trên cả quãng đường:
\(v_{tb}=\dfrac{s}{t_1+t_2+t_3}=\dfrac{1}{\dfrac{1}{3v_1}+\dfrac{2}{3\left(2v_2+v_3\right)}+\dfrac{4}{3\left(2v_2+v_3\right)}}\)
= \(\dfrac{3v_1\left(2v_2+v_3\right)}{6v_1+2v_2+v_3}\)
\(\dfrac{1}{3}\) quãng đường đầu đi với vận tốc V1 : V1 = \(\dfrac{1}{3}\).S = V1
Quãng đường còn lại đi với vận tốc V2 và V3= \(\dfrac{2}{3}\)S = V2.t2 +V3.t3
Ta có: t2= (\(\dfrac{2}{3}\)) . (t2 + t3) => t3= \(\dfrac{1}{2}\). t2
=> \(\dfrac{2}{3}\).S = V2.t2 + \(\dfrac{1}{2}\) . V3.t2 = ( V2 + \(\dfrac{1}{2}\). V3.).t2
Vận tốc trung bình: V = \(\dfrac{s}{t}\) = \(\dfrac{\left[V_1.t_1+\left(V_2+\dfrac{1}{2}.V_3\right).\right]t_2}{t_1+t_2+t_3}\)
= \(\dfrac{\left[V_1.t_1+\left(V_2+\dfrac{1}{2}.V_3\right).\right]t_2}{t_1+\dfrac{1}{2}t_2}\)
Ta thấy: \(\dfrac{2}{3}\)S = 2.(\(\dfrac{1}{3}\)S) (=) (V2 + \(\dfrac{1}{2}\) . V3 ). t2 = 2. V1 . t1
=> [V1.t1 + (V2 + \(\dfrac{1}{2}\) . V3). t2] = 3.V1.t1 và t2= \(\dfrac{\left(2.V_1.t_1\right)}{V_2+\dfrac{1}{2}.V_3}\)
Thay vào vận tốc trung bình, khử t1, quy đồng mẫu, cuối cùng ra được: v=\(\dfrac{\left[3.V_1\left(V_2+\dfrac{1}{2}.V_3\right)\right]}{\left[3.V_1+V_2+\dfrac{1}{2}.V_3\right]}\)
hay v= \(\dfrac{\left[3.V_1\left(2.V_2+V_3\right)\right]}{\left[6.V_1+2.V_2+V_3\right]}\)
Quãng đường người đó đi được trong nửa thời gian đầu là:
\(s_1=v_1.t_1=5.\dfrac{1}{2}t=\dfrac{5}{2}t\left(km\right)\)
Trong nửa thời gian còn lại, gọi s là quãng đường đi trong nửa thời gian còn lại.
Thời gian người đó đi 1/3 quãng đường đầu là:
\(t_2=\dfrac{s_2}{v_2}=\dfrac{\dfrac{1}{3}s}{v_2}\left(h\right)\)
Thời gian đi trong quãng đường còn lại:
\(t_3=\dfrac{s_3}{v_3}=\dfrac{\dfrac{2}{3}s}{v_3}\left(h\right)\)
Ta có: \(t_2+t_3=\dfrac{\dfrac{1}{3}s}{v_2}+\dfrac{\dfrac{2}{3}s}{v_3}=s\left(\dfrac{1}{3v_2}+\dfrac{2}{3v_3}\right)=\dfrac{t}{2}\)
\(\Rightarrow v_{tb}=\dfrac{S}{t}=\dfrac{s_1+s}{t_1+t_2+t_3}=\dfrac{\dfrac{5}{2}t+\dfrac{t}{2\left(\dfrac{1}{3v_2}+\dfrac{2}{3v_3}\right)}}{t}=\dfrac{71}{14}\left(km/h\right)\)
Bạn kiểm tra lại phần tính toán