K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 3

- Với \(p=3\Rightarrow2p+1=7\) và \(4p+1=13\) đều là số nguyên tố (thỏa mãn)

- Với \(p\ne3\Rightarrow p\) không chia hết cho 3

\(\Rightarrow p\) có dạng \(p=3k+1\) hoặc \(p=3k+2\)

Với \(p=3k+1\Rightarrow2p+1=2\left(3k+1\right)+1=3\left(2k+1\right)\) chia hết cho 3 \(\Rightarrow\) là hợp số (ktm)

Với \(p=3k+2\Rightarrow4p+1=4\left(3k+2\right)+1=3\left(4k+3\right)\) chia hết cho 3 \(\Rightarrow\) là hợp số (ktm)

Vậy \(p=3\) là giá trị duy nhất thỏa mãn yêu cầu.

TH1: p=3

=>\(2\cdot p+1=2\cdot3+1=7;4p+1=4\cdot3+1=13\)

=>Nhận

TH2: p=3k+1

\(2p+1=2\left(3k+1\right)+1=6k+3=3\left(2k+1\right)⋮3\)

=>Loại

TH3: p=3k+2

\(4p+1=4\left(3k+2\right)+1=12k+9=3\left(4k+3\right)⋮3\)

=>Loại

20 tháng 10 2018

là hợp số 

8 tháng 11 2014

a; nếu p=3 thì p+2=5 , p+4=7 đều là số nguyên tố

    nếu p>3 thì p có 2 dạng : p=3k+1, p=3k+2

     với p=3k+1 thì p+2=3k+1+2=3k+3 chia hết cho 3 => p+2 là hợp số

    với p=3k+2 thì p+4=3k+2+4=3k+6 '''''''''''''''''''''''''''''''''''''''''''' =>p+4 là hợp số

                         Vậy p=3 thỏa mãn đề bài 

 

     các phần còn lại tương tự

 

AH
Akai Haruma
Giáo viên
11 tháng 10 2023

Lời giải:
Nếu $p\vdots 3$ thì $p=3$. Khi đó $2p+1=7, 4p+1=13$ đều là số nguyên tố (thỏa mãn) 

Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k\in\mathbb{N}^*$

$\Rightarrow 2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$. Mà $2p+1>3$ với mọi $p$ nên $2p+1$ không là snt (trái với giả thiết) - loại.

Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}^*$

$\Rightarrow 4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. mà $4p+1>3$ với mọi $p$ nên không là snt(trái với giả thiết) - loại.

Vậy $p=3$ là đáp án duy nhất.

13 tháng 3 2021

b, 

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

10 tháng 12 2021
10000×2000?
12 tháng 9 2023

Do 2p - 1 lẻ và 4p - 1 lẻ nên p chẵn

Vậy p = 2

12 tháng 9 2023

Dùng phương pháp đánh giá em nhá.

Nếu p = 2 ⇒ 2p - 1 = 4 - 1 = 3 (thỏa mãn)

        p = 2 ⇒ 4p - 1 = 8 - 1 = 7 (thỏa mãn)

Nếu p = 3 ⇒ 2p - 1 = 6- 1 = 5 (thỏa mãn)

       p  = 3 ⇒ 4p - 1 = 12 - 1 = 11 (thỏa mãn)

Nếu p > 3 ⇒ p = 3k + 1 (k \(\) \(\in\) N*)

       p = 3k + 1 ⇒ 4p - 1 = 4.(3k + 1) - 1 = 12k - 3 ⋮ 3(loại)

Nếu p = 3k + 2 ⇒ 2p - 1 = 2.(3k + 2) - 1 = 6k - 3 ⋮ 3(loại)

Từ những phân tích trên ta có p = 2; 3

Kết luận: p \(\in\) {2; 3}

    

        

  

23 tháng 11 2023

Xét \(p=2\) thì \(2p+1=5;4p+1=9\) không thỏa mãn.

Xét \(p=3\) thì \(2p+1=7;4p+1=13\), thỏa mãn.

Xét \(p>3\) thì \(p=3q+1;p=3q+2\left(q\inℕ^∗\right)\)

Nếu \(p=3q+1\) thì \(2p+1=2\left(3q+1\right)+1=6q+3⋮3\) . Hơn nữa \(6q+3>3\) nên \(2p+1\) là hợp số, không thỏa mãn.

Nếu \(p=3q+2\) thì \(4p+1=4\left(3q+2\right)+1=12q+9⋮3\) . Lại có \(12q+9>3\) nên \(4p+1\) là hợp số, không thỏa mãn.

Vậy \(p=3\) là số nguyên tố duy nhất thỏa mãn ycbt.

23 tháng 11 2023

là p =1

26 tháng 2 2021

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

26 tháng 2 2021

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

29 tháng 10 2015

 

Vì p là số nguyên tố > 3 nên p có 2 dạng:

+ Nếu p = 3n + 1(n thuộc N) thì thay vào 2p + 1, ta có:

2(3n + 1) + 1 = 6n + 2 + 1 = 6n + 3 là hợp số (loại)

+ Nếu p = 3n + 2(n thuộc N) thì thay vô 2p + 1, ta có:

2(3n + 2) + 1 = 6n + 4 + 1 = 6n + 5

Vì 6 chia hết cho 3 => 6n chia hết cho 3

Mà 5 không chia hết cho 3 nên 2p + 1 là số nguyên tố (chọn)

Thay p = 3n + 2 vào 4p + 1, ta có:

4(3n + 2) + 1 = 12n + 8 + 1 = 12n + 9

Vì 12 chia hết cho 3 nên 12n chia hết cho 3

Mà 9 chia hết cho 3 nên 12n + 5 là hợp số hay 4p + 1 là hợp số

Tick cho mình nha

29 tháng 10 2015

p là số nguyên tố lớn hơn 3 nên p có dạng : 3k+1 hoặc 3k+2                                                                                                                        Xét trường hợp p=3k+1 ta có 2n+1=2(3k+1)+1=6k +2+1=6k+3(chia hết cho 3 nên là hợp số)Loại                                                                  Xét trường hợp p=3k+2 ta có 2n+1 =2(3k+2)+1=6k+4+1=6k+5(là số nguyên tố nên ta chọn trường hợp này)                                                     Vậy 4p+1=4(3k+2)+1=12k+8+1=12k+9 ta thấy 12k và 9 đều chia hết cho 3 nên (12k+9) là hợp số                                                                 Do đó 4p+1 là hợp số

Với p là số nguyên tố lớn hơn 3 thì p không chia hết cho 3

 \(\Rightarrow\)p có dạng 3k+1 và 3k+2

+) Với p=3k+1

Khi đó: 2p+7 = 2(3k+1)+7 = 6k+2+7 = 6k+9

Mà 6k+9 > 3 nên 6k+9 chia hết cho 3 hay 2p+7 là hợp số ( không thỏa mãn yêu cầu đề bài )

+) Với p=3k+2

Khi đó: 2p+7 = 2(3k+2)+7 = 6k+4+7 = 6k+11 - Là số nguyên tố ( thỏa mãn )

             4p+7 = 4(3k+2)+7 = 12k+8+7 = 12k+15

Mà 12k+15 > 3 nên 12k+15 chia hết cho 3 hay 4p+7 là hợp số ( thỏa mãn )

Vậy ...

_HT_

3 tháng 2 2022

em chịu

17 tháng 4 2019

Cho p là mt snguyên tlớn hơn 3 và 2p + 1 cũng là mt snguyên t, thì 4p + 1 là snguyên tố hay hp số? Vì sao?

p và 2p+1 nguyên tố

Nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố

Xét p chia hết cho 3

=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3

=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)

=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3

Kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố chia hết cho 3