Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để làm đc câu thứ nhất thì bạn cần nhớ : I A I = I B I \(\Rightarrow\) A = B hoặc A = -B
Còn câu thứ hai dễ mà. Bạn suy nghĩ kĩ xem có nghĩ ra gì ko. Nếu ko thì bạn hỏi mình. mình giảng cho nhé.
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
\(M=\frac{x+3}{7+x}=\frac{x+3}{x+7}\)
(*) M>0 <=> x+3 và x+7 cùng dấu
\(\left(+\right)\hept{\begin{cases}x+3< 0\\x+7< 0\end{cases}=>\hept{\begin{cases}x< -3\\x< -7\end{cases}=>x< -7}}\)
\(\left(+\right)\hept{\begin{cases}x+3>0\\x+7>0\end{cases}=>\hept{\begin{cases}x>-3\\x>-7\end{cases}=>x>-3}}\)
Vậy x<-7 hoặc x>-3 thì thỏa mãn M>0
(*)M<0 <=> x+3 và x+7 trái dấu
Mà x+3<x+7
\(=>\hept{\begin{cases}x+3< 0\\x+7>0\end{cases}=>\hept{\begin{cases}x< -3\\x>-7\end{cases}=>-7< x< -3}}\)
Vậy......
(*)M nguyên <=> x+3 chia hết cho x+7
<=>(x+7)-4 chia hết cho x+7
Mà x+7 chia hết cho x+7
=>-4 chia hết cho x+7=>x+7 E Ư(-4)={...},tới đây bn đã có thể tự làm tiếp rồi nhé
(*)M>1 \(< =>M=\frac{x+3}{x+7}>1< =>\frac{x+3}{x+7}-1>0< =>\frac{x+3-x-7}{x+7}>0< =>\frac{-4}{x+7}>0< =>x< -7\)
\(P=\frac{x-2}{x+1}=\frac{\cdot\left(x+1\right)-3}{x+1}=\frac{x+1}{x+1}-\frac{3}{x+1}=1-\frac{3}{x+1}\)
Để \(P=1-\frac{3}{x+1}\) là số nguyên <=> \(\frac{3}{x+1}\) là số nguyên
=> x + 1 thuộc ước của 3 là - 3; - 1; 1 ; 3
=> x + 1 = { - 3; - 1; 1 ; 3 }
=> x = { - 4 ; - 2 ; 0 ; 2 }
1.
Theo bài ra ta có:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10
Ta có:
\(\frac{x}{8}=\frac{y}{12},\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Suy ra:
x = 2 . 8 = 16
y = 2 . 12 = 24
z = 2 . 15 = 30
2/
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
Ta có :x = 2k ; y = 5k
=>x . y = 2k . 5k = 10k2 = 10 => k2 = 1 => k = ±1
Thay k = 1 ta có : x = 2 . 1 = 2 ; y = 5 . 1 = 5
Thay k = -1 ta có : x = 2 . (-1) = -2 ; y = 5 . (-1) = -5
Vậy x = ±2 ; y = ±5
3/
Giải:
Gọi số học sinh khối 6,7,8,9 lần lượt là a,b,c,d .
Theo bài ra ta có:
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và b - d = 70
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)
Suy ra :
a = 35 . 9 = 315
b = 35 . 8 = 280
c = 35 . 7 = 245
d = 35 . 6 = 210
Vậy số học sinh khối 6,7,8,9 lần lượt là 315;280;245;210 .
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(\Rightarrow2\cdot\frac{x-1}{2x+2}=\frac{2009}{2011}\)
\(\Rightarrow\frac{2x-2}{2x+2}=\frac{2009}{2011}\)
Bạn làm nốt.Nhân chéo là ra
\(\left(x-1\right)f\left(x\right)=\left(x+4\right)\cdot f\left(x+8\right)\)
Với \(x=1\) ta có:
\(\left(1-1\right)\cdot f\left(1\right)=\left(1+4\right)\cdot f\left(9\right)\)
\(\Rightarrow5\cdot f\left(9\right)=0\)
\(\Rightarrow f\left(9\right)=0\)
Vậy \(x=9\)
Thay \(x=-4\) vào ta được:
\(\left(-4-1\right)\cdot f\left(-4\right)=0\cdot f\left(4\right)\)
\(\Rightarrow f\left(-4\right)=0\)
Vậy \(x=-4\)
\(\Rightarrow f\left(x\right)\) có ít nhất 2 nghiệm là 9;-4
ĐKXĐ : \(x+2\ge0\Rightarrow x\ge-2\)
=> |x| = x + 2
<=> \(\orbr{\begin{cases}x=x+2\\x=-x-2\end{cases}}\Rightarrow\orbr{\begin{cases}0x=2\left(\text{loại}\right)\\2x=-2\end{cases}\Rightarrow x=-1\left(tm\right)}\)
b) ĐKXĐ \(x\ge0\)
=> |x - 1| = x
<=> \(\orbr{\begin{cases}x-1=x\\-x+1=x\end{cases}}\Rightarrow\orbr{\begin{cases}0x=1\left(\text{loại}\right)\\2x=1\end{cases}\Rightarrow x=0,5\left(tm\right)}\)
c) ĐKXĐ \(2x-3\ge0\Rightarrow x\ge1,5\)
Khi đó : \(x-1\ge0;x+1\ge0\)
Ta có |x - 1| + |x + 1| = 2x - 3
<=> x - 1 + x + 1 = 2x - 3
=> 2x = 2x - 3
=> 0x = -3 (loại)
Vậy \(x\in\varnothing\)