Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7a) \(\Delta=\left(3m+1\right)^2-4\left(2m^2+m-1\right)=m^2+2m+5=\left(m+1\right)^2+4>0\)
\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt
b) Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=3m+1\\x_1x_2=2m^2+m-1\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2-3x_1x_2=\left(x_1+x_2\right)^2-5x_1x_2=\left(3m+1\right)^2-5\left(2m^2+m-1\right)\)
\(=-m^2+m+6=-\left(m^2-m-6\right)\)
Ta có: \(m^2-m-6=m^2-2.m.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{25}{4}\)
\(=\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\Rightarrow-\left(m^2-m-6\right)\le\dfrac{25}{4}\)
\(\Rightarrow GTLN=\dfrac{25}{4}\) khi \(m=\dfrac{1}{2}\)
a) Ta có: \(x^2-\left(3m+1\right)x+2m^2+m-1\)
\(\Delta=\left(3m+1\right)^2-4\left(2m^2+m-1\right)\)
\(=9m^2+6m+1-8m^2-4m+4\)
\(=m^2+2m+5\)
\(=\left(m+1\right)^2+4>0\forall m\)
Do đó: Phương trình luôn có hai nghiệm phân biệt với mọi m
b) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=3m+1\\x_1x_2=2m^2+m-1\end{matrix}\right.\)
Ta có: \(B=x_1^2+x_2^2-3x_1x_2\)
\(=\left(x_1+x_2\right)^2-5x_1x_2\)
\(=\left(3m+1\right)^2-5\left(2m^2+m-1\right)\)
\(=9m^2+6m+1-10m^2-5m+5\)
\(=-m^2+m+6\)
\(=-\left(m^2-m-6\right)\)
\(=-\left(m^2-2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{25}{4}\)
\(=-\left(m-\dfrac{1}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall m\)
Dấu '=' xảy ra khi \(m=\dfrac{1}{2}\)
Cho mình hỏi : A = ( x thuộc N / 2x + 2 ; x bé hơn 100 mình cần gấp lắm rồi,
8:
a: Để đây là hsbn thì m-1<>0
=>m<>1
b: Để hàm số đồng biến thì m-1>0
=>m>1
Để hàm số nghịch biến thì m-1<0
=>m<1
c: Thay x=3 và y=4 vào (d) ta được:
3(m-1)+5=4
=>3m+2=4
=>3m=2
=>m=2/3
2\(\sqrt{\dfrac{16}{3}}\) - 3\(\sqrt{\dfrac{1}{27}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{3}{3\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{1}{\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{16}{2\sqrt{3}}\) - \(\dfrac{2}{2\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{11}{2\sqrt{3}}\)
= \(\dfrac{11\sqrt{3}}{6}\)
f, 2\(\sqrt{\dfrac{1}{2}}\)- \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{2}{\sqrt{2}}\) - \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{5\sqrt{2}}{4}\)
(1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1- \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))
= \(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3+\sqrt{3}}{\sqrt{3}+1}\)
= \(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)
= \(\dfrac{-4}{3-1}\)
= \(\dfrac{-4}{2}\)
= -2
Bài 1:
\(a,ĐK:x+5\ge0\Leftrightarrow x\ge-5\\ b,ĐK:\dfrac{2021}{4-2x}\ge0\Leftrightarrow4-2x>0\Leftrightarrow x< 2\)
Bài 2:
\(a,=5\sqrt{3}-4\sqrt{3}-10\sqrt{3}-3\sqrt{3}=-12\sqrt{3}\\ b,=2\sqrt{5}+\dfrac{8\left(3-\sqrt{5}\right)}{4}=2\sqrt{5}+6-2\sqrt{5}=6\)
Bài 3:
\(A=\dfrac{\sqrt{x}-2+2\sqrt{x}+4+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3}{\sqrt{x}-2}\)
Bài 4:
\(a,\Leftrightarrow\left|3x-2\right|=7\Leftrightarrow\left[{}\begin{matrix}3x=9\\3x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{3}\end{matrix}\right.\\ b,ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow5\sqrt{2x-1}-\sqrt{2x-1}=12\\ \Leftrightarrow\sqrt{2x-1}=3\Leftrightarrow2x-1=9\\ \Leftrightarrow x=5\left(tm\right)\)
Bài 5:
\(b,\Leftrightarrow\left\{{}\begin{matrix}m-1=2\\2m+\sqrt{5}\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne\dfrac{-3-\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow m=3\)
1,
a, x khác phân số có mẫu là 0
b,x khác 2
4,
a, theo đề:
=>(3x-2)^2=49
=>3x-2=7
x=3
bt cs nhiu đây à :<
a: \(=1-2-3-4=-8\)
b: \(=8\sqrt{7}\cdot\sqrt{7}-5\sqrt{7}\cdot\sqrt{7}+6\sqrt{7}\cdot\sqrt{7}-4\sqrt{7}\cdot\sqrt{7}\)
\(=56-35+42-28\)
=21+42-28
=35
Bài 4:
ĐKXĐ: \(x\ge3\)
Ta có: \(\sqrt{x^2-9}-\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
\(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (Đk:\(a>0\))
\(=\dfrac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1\)
\(=a-\sqrt{a}\)
b) \(P=2\Leftrightarrow a-\sqrt{a}=2\Leftrightarrow a-\sqrt{a}-2=0\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=2\\\sqrt{a}=-1\left(vn\right)\end{matrix}\right.\)\(\Rightarrow a=4\) (tm)
Vậy a=4 thì P=2
c) \(P=a-\sqrt{a}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\)
Vậy \(P_{min}=-\dfrac{1}{4}\)
Coi pt \(a-\sqrt{a}-2=0\) là pt ẩn \(\sqrt{a}\)
Hoặc e đặt \(t=\sqrt{a}\)
Pt tt: \(t^2-t-2=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=-1\\\sqrt{a}=2\end{matrix}\right.\)
Bài 3:
a) Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3}{\sqrt{x}-3}\right)\cdot\dfrac{\sqrt{x}+3}{x+9}\)
\(=\dfrac{x-3\sqrt{x}+3\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}+3}{x+9}\)
\(=\dfrac{1}{\sqrt{x}-3}\)
b) Ta có: \(B=21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{15}\)
\(=21\left(5+\sqrt{3}-\sqrt{5}+2\sqrt{\left(2+\sqrt{3}\right)\left(3-\sqrt{5}\right)}\right)-6\left(5-\sqrt{3}+\sqrt{5}+2\sqrt{\left(2-\sqrt{3}\right)\left(3+\sqrt{5}\right)}\right)-15\sqrt{15}\)
\(=21\left(4+\sqrt{15}\right)-6\left(4+\sqrt{15}\right)-15\sqrt{15}\)
\(=84+21\sqrt{15}-24-6\sqrt{15}-15\sqrt{15}\)
=60