K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 8:

a) Ta có: \(A=\left(x-y\right)^3+3xy\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-2xy+y^2+3xy\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3-y^3\)

b) Ta có: \(B=\left(x+y\right)^3+3\left(x-y\right)\left(x+y\right)^2+3\left(x-y\right)^2\left(x+y\right)+\left(x-y\right)^3\)

\(=\left(x+y+x-y\right)^3\)

\(=\left(2x\right)^3=8x^3\)

6 tháng 8 2021

- Ta có:

\(f\left(x\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt: \(\left(x^2+5x+5\right)=a\) ta được:

\(=\left(a-1\right)\left(a+1\right)+1\)

\(=a^2-1+1=a^2\)

Thay lại \(a=\left(x^2+5x+5\right)\) được:

\(\left(x^2+5x+5\right)^2\)

- Đối chiếu với \(\left(ax^2+bx+c\right)^2\)

Vậy \(a=1;b=5;c=5\)

 

10 tháng 12 2021

2: \(A=x^2-10x+25-34=\left(x-5\right)^2-34\ge-34\forall x\)

Dấu '=' xảu ra khi x=5

10 tháng 12 2021

\(1,C=x^2+x-3\\ \Rightarrow C=\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{13}{4}\\ \Rightarrow C=\left(x+\dfrac{1}{2}\right)^2-\dfrac{13}{4}\ge-\dfrac{13}{4}\)

dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy \(C_{min}=-\dfrac{13}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

\(2,A=x^2-10x-9\\ \Rightarrow A=\left(x^2-10x+25\right)-34\\ \Rightarrow A=\left(x-5\right)^2-34\)

dấu "=" xảy ra \(\Leftrightarrow x=5\)

Vậy \(A_{min}=-34\Leftrightarrow x=5\)

3: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)=27\)

\(\Leftrightarrow x^3-27-x^3+x=27\)

hay x=54

c: \(C=\left(x+y\right)^2-\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)

=4xy

d: \(D=\left(\dfrac{x}{2}-y\right)\left(\dfrac{x}{2}+y\right)=\dfrac{1}{4}x^2-y^2\)

9 tháng 9 2018

\(A=9x^2+4x=\left(9x^2+4x+\dfrac{4}{9}\right)-\dfrac{4}{9}=\left(3x+\dfrac{2}{3}\right)^2-\dfrac{4}{9}\ge-\dfrac{4}{9}\)

Vậy GTNN của A là \(-\dfrac{4}{9}\) khi x = \(-\dfrac{2}{9}\)

\(B=25x^2+x-1=\left(25x^2+x+\dfrac{1}{100}\right)-\dfrac{101}{100}=\left(5x+\dfrac{1}{10}\right)^2-\dfrac{101}{100}\ge-\dfrac{101}{100}\)

Vậy GTNN của B là \(-\dfrac{101}{100}\) khi x = \(-\dfrac{1}{50}\)

\(C=3x^2+4x+1=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{1}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{1}{3}\ge-\dfrac{1}{3}\)

Vậy GTNN của C là \(-\dfrac{1}{3}\) khi x = \(-\dfrac{2}{3}\)

14 tháng 9 2018

thanks