Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(0\right)=2010\Rightarrow a.0^2+b.0+c=2010\Rightarrow c=2010\)
\(f\left(1\right)=2011\Rightarrow a.1^2+b.1+c=2011\Rightarrow a+b+c=2011\)
\(\Rightarrow a+b+2010=2011\Rightarrow a+b=1\) (1)
\(f\left(-1\right)=2012\Rightarrow a.\left(-1\right)^2+b.\left(-1\right)+c=2012\)
\(\Rightarrow a-b+c=2012\Rightarrow a-b+2010=2012\)
\(\Rightarrow a-b=2\Rightarrow a=b+2\)
Thế vào (1) \(\Rightarrow b+2+b=1\Rightarrow2b=-1\Rightarrow b=-\dfrac{1}{2}\)
\(\Rightarrow a=b+2=-\dfrac{1}{2}+2=\dfrac{3}{2}\)
\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^2-\dfrac{1}{2}x+2010\)
\(\Rightarrow f\left(-2\right)=\dfrac{3}{2}.\left(-2\right)^2-\dfrac{1}{2}.\left(-2\right)+2010=2017\)
a, \(\widehat{B}_1=\widehat{B_3}\) đối đỉnh
\(\widehat{A}_1=\widehat{B}_1\) theo bài đầu
Do đó \(\widehat{A_1}=\widehat{B_3}\)
Mặt khác,ta có \(\widehat{A_1}+\widehat{A_4}=180^0\) hai góc kề bù
=> \(\widehat{A_4}=180^0-\widehat{A_1}\) \((1)\)
Và \(\widehat{B_2}+\widehat{B_3}=180^0\) hai góc kề bù
=> \(\widehat{B_2}=180^0-\widehat{B_3}\) \((2)\)
\(\widehat{A_1}=\widehat{B_3}\) \((3)\)
Từ 1,2,3 ta có : \(\widehat{A_4}=\widehat{B_2}\)
b, \(\widehat{A_2}=\widehat{A_4}\) đối đỉnh
\(\widehat{A_4}=\widehat{B_2}\) theo câu a
Do đó : \(\widehat{A_2}=\widehat{B_2};\widehat{A_1}=\widehat{A_3}\) đối đỉnh
\(\widehat{A_1}=\widehat{B_3}\) câu a
Do đó \(\widehat{A_3}=\widehat{B_3}\). Mặt khác \(\widehat{B_2}=\widehat{B_4}\) hai góc đối đỉnh
\(\widehat{A_4}=\widehat{B_2}\) câu a . Do đó \(\widehat{A_4}=\widehat{B_4}\)
c, \(\widehat{B_1}+\widehat{B_2}=180^0\) hai góc kề bù
\(\widehat{A_1}=\widehat{B_1}\) theo đầu bài
Do đó \(\widehat{A_1}+\widehat{B_2}=180^0\)
Mặt khác \(\widehat{B_2}+\widehat{B_3}=180^0\) kề bù
\(\widehat{A_4}=\widehat{B_2}\) theo câu a . Do đó \(\widehat{A_4}+\widehat{B_3}=180^0\)
Ta có: `a, b, c` là các cạnh của tam giác
`-` Theo bất đẳng thức tam giác ta có: `A+B>C -> AB+AC>A^2`
Tương tự vế trên
`-> CA+CB>C^2 ; AB+BC>B^2`
Cộng tổng tất cả các vế trên: `AC+BC+AB+AC+AB+BC > A^2+B^2+C^2`
`-> 2 (AB+AC+BC) > A^2+B^2+C^2 (đpcm)`
Áp dụng tính chất dãy tỉ số bằng nhau ta có :0
\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=..............=\dfrac{a_9-9}{1}=\dfrac{\left(a_1+a_2+......+a_9\right)-\left(1+2+....+9\right)}{9+8+..+1}\)
\(=\dfrac{90-45}{45}=1\)
+) \(\dfrac{a_1-1}{9}=1\Leftrightarrow a_1=10\)
+) \(\dfrac{a_2-1}{8}=1\Leftrightarrow a_2=10\)
........................
+) \(\dfrac{a_9-9}{1}=1\Leftrightarrow a_9=10\)
Vậy \(a_1=a_2=..........=a_9=10\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=...=\dfrac{a_9-9}{1}\)
\(=\dfrac{a_1+a_2+...+a_9-\left(1+2+...+9\right)}{9+8+7+...+1}\)\(=\dfrac{90-45}{45}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a_1-1}{9}=1\\\dfrac{a_2-2}{8}=1\\.................\\\dfrac{a_9-9}{1}=1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a_1-1=9\\a_2-2=8\\.................\\a_9-9=1\end{matrix}\right.\)\(\Rightarrow a_1=a_2=...=a_9=10\)
tách ra nha :
\(\left(a^2-1\right)\left(a^2-40\right)< 0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)\left(a-20\right)\left(a+20\right)< 0\)
Xét từng nhân tử phải nhỏ hơn 0 thì đa thức nhỏ hơn không
xét ta có kết quả
o0o I am a studious person o0o
Sai nhá (a2 - 40) ko thể = (a - 20) (a + 20)
Vù 40 khác 202