Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo bài tương tự tại đây nhé.
Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo bài tương tự tại đây nhé.
Câu hỏi của trần manh kiên - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo câu tương tự tại đây nhé.
Giải thích: Nếu x =a là một nghiệm nguyên của pT
=> 3a3 - 7a2 + 17a - 5 = 0
=> a(3a2 - 7a + 17) = 5
Vì a ; 3a2 - 7a + 17 đều nguyên => a là ước của 5 . Do đó, a có thể = -1;-5;1;5
*) Tổng quát: Nếu 1 pt có nghiệm nguyên thì nghiệm đó là ước của hệ số tự do
<k gium nha
tong quat : neu 1 pt co nghiem thi nghiem do la uoc cua he so tu do
giai thich : => 3a - 7a 17 - 5 = 3 + 2 = 5
=> a = 5 - 0 vi luc nay ta con no 5 . do do co the la 1515 gi do nhu ban noi >
a là nghiệm của đa thức f(x) thì f(a) = 0
còn x = -1;1 k phải là nghiệm nên f(-1);f(1) khác 0
bn thay x = a (đk nguyêm) ; = 1; =1 vào là tìm dc
Trước hết bạn nên nhớ tính chất này (được suy ra từ định lí Bê - du hay ng` ta thường gọi nó là hệ quả của đlí Bê - du)
Nếu đa thức f(x) có a là nghiệm thì khi phân tích ra nhân tử, f(x) chắc chắn có một thừa số là x - a
Cái này rất dễ chứng minh, bạn dựa Bê - du: " Số dư trong phép chia f(x) cho x - a đúng bằng f(a)"
Khi a là nghiệm của f(x) thì f(a) = 0 \Rightarrow f(x) chia hết cho x - a \Rightarrow f(x) = (x - a). B(x)
Bây giờ đến phần chứng minh phần chính của định lí nghiệm đa thức : Nghiệm nguyên của đa thức(nếu có) phải là ước của hệ số tự do.
Thật vậy giả sử đa thức aoxn+a1xn−1+a2xn−2+...+an−1.x+anaoxn+a1xn−1+a2xn−2+...+an−1.x+an với các hệ số a0→an∈Za0→an∈Z, có nghiệm x = a (a∈Z)(a∈Z)
Thế thì cần chứng minh a là ước của anan
Thật vậy: Theo hệ quả của định lí Bê - du ta có :
aoxn+a1xn−1+a2xn−2+...+an−1.x+an=(x−a)(b0xn−1+b1xn−2+b2xn−3+...+bn−1)aoxn+a1xn−1+a2xn−2+...+an−1.x+an=(x−a)(b0xn−1+b1xn−2+b2xn−3+...+bn−1)
trong đó b0→bn−1∈Zb0→bn−1∈Z
Hạng tử bậc thấp nhất ở VP là −a.bn−1−a.bn−1, hạng tử bậc thấp nhất VT là anan
Do vậy nếu đồng nhất 2 đa thức trên ta sẽ có :
−abn−1=an−abn−1=an tức là a là ước số của anan
không hiểu chỗ nào thì hỏi mình .