K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2020

\(\left(\frac{1}{2}\right)^{3x-1}=\left(\frac{1}{2}\right)^5\)

\(\Rightarrow3x-1=5\)

3x \(=6\)

x \(=2\)

Vậy x=2

3 tháng 7 2019

a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)

=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)

=> \(\left|2-\frac{3}{2}x\right|=x+6\)

ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)

Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)

=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)

=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)

b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)

=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)

=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)

=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)

=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)

=> x = 1/4

hoặc x = 0 hoặc x = 1/2

10 tháng 3 2017

\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+....+\frac{1}{32}\left(1+2+3+...+32\right)\)

\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+....+\frac{1}{32}.\frac{32.\left(32+1\right)}{2}\)

\(=1+\frac{2+1}{2}+\frac{3+1}{2}+....+\frac{32+1}{2}\)

\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{33}{2}\)

\(\frac{2+3+4+....+33}{2}\)

\(=\frac{\frac{33\left(33+1\right)}{2}-1}{2}=280\)

7 tháng 8 2017

tớ không biết đâu

28 tháng 9 2018

a/ \(\left(\frac{1}{5}\right)^x=\left(\frac{1}{5^3}\right)^3=\left(\frac{1}{5}\right)^9\Rightarrow x=9\)

b/ \(\left(\frac{3}{5}\right)^x=\left(\frac{3^2}{5^2}\right)^3=\left(\frac{3}{5}\right)^6\Rightarrow x=6\)

c\(2^{3-2x}=\left(2^3\right)^3=2^9\Rightarrow3-2x=9\Rightarrow x=-3\)

d/ \(2^{3x+1}=32^2=\left(2^5\right)^2=2^{10}\Rightarrow3x+1=10\Rightarrow x=3\)

e/ \(3^{6-3x}=81^3=\left(3^4\right)^3=3^{12}\Rightarrow6-3x=12\Rightarrow x=-2\)

28 tháng 9 2018

\(\left(\frac{1}{5}\right)^x=\left(\frac{1}{125}\right)^3\Leftrightarrow\left(\frac{1}{5}\right)^x=\left[\left(\frac{1}{5}\right)^3\right]^3\Leftrightarrow\left(\frac{1}{5}\right)^x=\left(\frac{1}{5}\right)^9\Leftrightarrow x=9\)

\(\left(\frac{3}{5}\right)^x=\left(\frac{9}{25}\right)^3\Leftrightarrow\left(\frac{3}{5}\right)^x=\left[\left(\frac{3}{5}\right)^2\right]^3\Leftrightarrow\left(\frac{3}{5}\right)^x=\left(\frac{3}{5}\right)^6\Leftrightarrow x=6\)

\(2^{3-2x}=8^3\Leftrightarrow2^{3-2x}=\left(2^3\right)^3\Leftrightarrow2^{3-2x}=2^9\Leftrightarrow3-2x=9\)

\(\Leftrightarrow2x=3-9\Leftrightarrow2x=-6\Leftrightarrow x=\left(-6\right):2\Leftrightarrow x=-3\)

Các phép còn lại làm tương tự bn nha !

\(\Leftrightarrow\dfrac{1}{3}\left(4x^2-4x+1\right)-\dfrac{1}{2}\left(9x^2+6x+1\right)=\dfrac{1}{3}\left(2x-3x^2-2+3x\right)\)

\(\Leftrightarrow\dfrac{4}{3}x^2-\dfrac{4}{3}x+\dfrac{4}{3}-\dfrac{9}{2}x^2-3x-\dfrac{1}{2}=\dfrac{1}{3}\left(-3x^2+5x-2\right)\)

\(\Leftrightarrow x^2\cdot\dfrac{-19}{6}-\dfrac{13}{3}x+\dfrac{5}{6}+x^2-\dfrac{5}{3}x+\dfrac{2}{3}=0\)

\(\Leftrightarrow x^2\cdot\dfrac{-13}{6}-6x+\dfrac{3}{2}=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot\left(-\dfrac{13}{6}\right)\cdot\dfrac{3}{2}=49\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{6-7}{2\cdot\dfrac{-13}{6}}=\dfrac{3}{13}\\x_2=\dfrac{6+7}{2\cdot\dfrac{-13}{6}}=-3\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}\left(x^2-4x+4\right)-\dfrac{13}{3}\left(x^2+6x+9\right)=\dfrac{1}{4}\left(x^2-3x+2\right)-2\left(9x^2+3x-2\right)\)

\(\Leftrightarrow x^2\cdot\dfrac{1}{2}-2x+2-\dfrac{13}{3}x^2-26x-39=\dfrac{1}{4}x^2-\dfrac{3}{4}x+\dfrac{1}{2}-18x^2-6x+4\)

\(\Leftrightarrow x^2\cdot\dfrac{167}{12}-\dfrac{85}{4}x-\dfrac{83}{2}=0\)

\(\Leftrightarrow167x^2-255x-498=0\)

\(\text{Δ}=\left(-255\right)^2-4\cdot167\cdot\left(-498\right)=397689\)

Vì Δ>0 nên phương trình có 2 nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{255-\sqrt{397689}}{334}\\x_2=\dfrac{255+\sqrt{397689}}{334}\end{matrix}\right.\)

18 tháng 5 2016

1) \(x=\frac{99}{196}\)

2) \(x=-2\)

3) \(x\approx-0,59\)

giup mk giải rõ dc ko

10 tháng 7 2016

a.

\(\left(\frac{1}{3}\right)^2\times27=3^x\)

\(\frac{1^2}{3^2}\times3^3=3^x\)

\(3^1=3^x\)

\(x=1\)

b.

\(\frac{64}{\left(-2\right)^x}=-32\)

\(\frac{\left(-2\right)^6}{\left(-2\right)^x}=\left(-2\right)^5\)

\(\left(-2\right)^x=\frac{\left(-2\right)^6}{\left(-2\right)^5}\)

\(\left(-2\right)^x=-2\)

\(x=1\)

c.

\(3x^2-\frac{1}{2}x=0\)

\(x\times\left(3x-\frac{1}{2}\right)=0\)

TH1:

\(x=0\)

TH2:

\(3x-\frac{1}{2}=0\)

\(3x=\frac{1}{2}\)

\(x=\frac{1}{2}\div3\)

\(x=\frac{1}{2}\times\frac{1}{3}\)

\(x=\frac{1}{6}\)

Vậy x = 0 hoặc x = 1/6

Bài 1

\(a,\left(\frac{3}{5}\right)^2-\left[\frac{1}{3}:3-\sqrt{16}.\left(\frac{1}{2}\right)^2\right]-\left(10.12-2014\right)^0\)

\(=\frac{9}{25}-\left[\frac{1}{9}-4.\frac{1}{4}\right]-1\)

\(=\frac{9}{25}-\left(-\frac{8}{9}\right)-1\)

\(=\frac{9}{25}+\frac{8}{9}-1\)

\(=\frac{56}{225}\)

\(b,|-\frac{100}{123}|:\left(\frac{3}{4}+\frac{7}{12}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)

\(=\frac{100}{123}:\left(\frac{4}{3}\right)+\frac{23}{123}:\frac{4}{3}\)

\(=\left(\frac{100}{123}+\frac{23}{123}\right):\frac{4}{3}\)

\(=1:\frac{4}{3}=\frac{3}{4}\)

Phần c đăng riêng vì mk chưa tìm đc cách giải bt mỗi đáp án :v 

\(c,\frac{\left(-5\right)^{32}.20^{43}}{\left(-8\right)^{29}.125^{25}}\)

\(=\frac{\left(-5\right)^{32}.\left(4.5\right)^{43}}{\left[4.\left(-2\right)\right]^{29}.\left(-5^3\right)^{25}}\)

\(=\frac{-5^{32}.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5\right)^{75}}\)

\(=\frac{\left(-5^4\right)^8.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5^3\right)^{25}}\)

\(=-\frac{1}{2}\)